Project Presentation: Algorithmic Structuring and Compression of Proofs (ASCOP)

  • Stefan Hetzl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)

Abstract

Computer-generated proofs are typically analytic, i.e. they essentially consist only of formulas which are present in the theorem that is shown. In contrast, mathematical proofs written by humans almost never are: they are highly structured due to the use of lemmas.

The ASCOP-project aims at developing algorithms and software which structure and abbreviate analytic proofs by computing useful lemmas. These algorithms will be based on recent groundbreaking results establishing a new connection between proof theory and formal language theory. This connection allows the application of efficient algorithms based on formal grammars to structure and compress proofs.

Keywords

Proof Theory Analytic Proof Tree Language Automate Theorem Prover Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Generic Architecture for Proofs (GAPT), http://code.google.com/p/gapt/
  2. 2.
  3. 3.
    Baaz, M., Zach, R.: Algorithmic Structuring of Cut-free Proofs. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 29–42. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  4. 4.
    Dunchev, T., Leitsch, A., Libal, T., Weller, D., Woltzenlogel Paleo, B.: System Description: The Proof Transformation System CERES. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 427–433. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Gécseg, F., Steinby, M.: Tree Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, pp. 1–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39(2), 176–210 (1934)MathSciNetGoogle Scholar
  7. 7.
    Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Université de Paris (1930)Google Scholar
  8. 8.
    Hetzl, S.: Proofs as Tree Languages, submitted, preprint, http://hal.archives-ouvertes.fr/hal-00613713/
  9. 9.
    Hetzl, S.: On the form of witness terms. Archive for Mathematical Logic 49(5), 529–554 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hetzl, S.: Applying Tree Languages in Proof Theory. In: Dediu, A.H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hetzl, S., Straßburger, L.: Herbrand-Confluence for Cut-Elimination in Classical First-Order Logic (submitted)Google Scholar
  13. 13.
    Jacquemard, F., Klay, F., Vacher, C.: Rigid Tree Automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 446–457. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Information and Computation 209, 486–512 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    McGuire, G., Tugemann, B., Civario, G.: There is no 16-Clue Sudoku: Solving the Sudoku Minimum Number of Clues Problem, http://arxiv.org/abs/1201.0749
  16. 16.
    Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370 (1987)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 447–462. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Hetzl
    • 1
  1. 1.Institute of Discrete Mathematics and GeometryVienna University of TechnologyViennaAustria

Personalised recommendations