Real Algebraic Strategies for MetiTarski Proofs

  • Grant Olney Passmore
  • Lawrence C. Paulson
  • Leonardo de Moura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)

Abstract

MetiTarski [1] is an automatic theorem prover that can prove inequalities involving sin, cos, exp, ln, etc. During its proof search, it generates a series of subproblems in nonlinear polynomial real arithmetic which are reduced to true or false using a decision procedure for the theory of real closed fields (RCF). These calls are often a bottleneck: RCF is fundamentally infeasible. However, by studying these subproblems, we can design specialised variants of RCF decision procedures that run faster and improve MetiTarski’s performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.: MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. Journal of Automated Reasoning 44(3), 175–205 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Brown, C.W.: QEPCAD-B: A System for Computing with Semi-algebraic Sets via Cylindrical Algebraic Decomposition. SIGSAM Bull. 38, 23–24 (2004)CrossRefGoogle Scholar
  3. 3.
    Davenport, J.H., Heintz, J.: Real Quantifier Elimination is Doubly Exponential. J. Symb. Comput. 5, 29–35 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint Satisfaction Techniques. ACM Trans. on Mathematical Software 32, 138–156 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gulwani, S., Tiwari, A.: Constraint-Based Approach for Analysis of Hybrid Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Jovanovic̀, D., de Moura, L.: Solving Nonlinear Arithmetic. In: IJCAR 2012 (2012)Google Scholar
  8. 8.
    Strzebonski, A.: Solving Systems of Strict Polynomial Inequalities. Journal of Symbolic Computation 29(3), 471–480 (2000)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Strzebonski, A.: Cylindrical Algebraic Decomposition using Validated Numerics. Journal of Symbolic Computation 41(9), 1021–1038 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Strzebonski, A.: Real Root Isolation for Tame Elementary Functions. In: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, pp. 341–350. ACM, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Grant Olney Passmore
    • 1
    • 2
  • Lawrence C. Paulson
    • 1
  • Leonardo de Moura
    • 3
  1. 1.Computer LaboratoryUniversity of CambridgeUK
  2. 2.LFCSUniversity of EdinburghUK
  3. 3.Microsoft ResearchRedmondUSA

Personalised recommendations