Reasoning on Schemata of Formulæ

  • Mnacho Echenim
  • Nicolas Peltier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)


A logic is presented for reasoning on iterated sequences of formulæ over some given base language. The considered sequences, or schemata, are defined inductively, on some algebraic structure (for instance the natural numbers, the lists, the trees etc.). A proof procedure is proposed to relate the satisfiability problem for schemata to that of finite disjunctions of base formulæ. It is shown that this procedure is sound, complete and terminating, hence the basic computational properties of the base language can be carried over to schemata.


Function Symbol Predicate Symbol Base Language Constant Symbol Proof Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, P.: An Introduction to Inductive Definitions. In: Barwise, K.J. (ed.) Handbook of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977)CrossRefGoogle Scholar
  2. 2.
    Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus for Propositional Logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 32–46. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results for propositional schemata. Journal of Artificial Intelligence Research 40, 599–656 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aravantinos, V., Peltier, N.: Schemata of SMT-Problems. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 27–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An analysis of Fürstenberg’s proof of the infinity of primes. Theor. Comput. Sci. 403(2-3), 160–175 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baelde, D., Miller, D., Snow, Z.: Focused Inductive Theorem Proving. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 278–292. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE, an Automatic Theorem Prover. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 460–462. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. Journal of Automated Reasoning 14, 14–189 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boyer, R.S., Moore, J.S.: A Theorem Prover for a Computational Logic. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 1–15. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  11. 11.
    Bundy, A.: The automation of proof by mathematical induction. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 845–911. Elsevier and MIT Press (2001)Google Scholar
  12. 12.
    Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 14, pp. 913–962. North-Holland (2001)Google Scholar
  13. 13.
    Echenim, M., Peltier, N.: Reasoning on Schemata of Formulae. Technical report, CoRR, abs/1204.2990 (2012)Google Scholar
  14. 14.
    Giesl, J., Kapur, D.: Decidable Classes of Inductive Theorems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Gupta, A., Fisher, A.L.: Parametric Circuit Representation Using Inductive Boolean Functions. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 15–28. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Kapur, D., Musser, D.: Proof by consistency. Artificial Intelligence 31 (1987)Google Scholar
  17. 17.
    Lenzi, G.: A New Logical Characterization of Büchi Automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 467–477. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Park, D.M.: Finiteness is Mu-ineffable. Theoretical Computer Science 3, 173–181 (1976)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Paulin-Mohring, C.: Inductive Definitions in the system Coq - Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mnacho Echenim
    • 1
  • Nicolas Peltier
    • 1
  1. 1.LIG, Grenoble INP/CNRSUniversity of GrenobleFrance

Personalised recommendations