Advertisement

Verifying an Algorithm Computing Discrete Vector Fields for Digital Imaging

  • Jónathan Heras
  • María Poza
  • Julio Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7362)

Abstract

In this paper, we present a formalization of an algorithm to construct admissible discrete vector fields in the Coq theorem prover taking advantage of the SSReflect library. Discrete vector fields are a tool which has been welcomed in the homological analysis of digital images since it provides a procedure to reduce the amount of information but preserving the homological properties. In particular, thanks to discrete vector fields, we are able to compute, inside Coq, homological properties of biomedical images which otherwise are out of the reach of this system.

Keywords

Discrete Vector Fields Haskell Coq SSReflect Integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mathematical components team homepage, http://www.msr-inria.inria.fr/Projects/math-components
  2. 2.
    Aransay, J., Ballarin, C., Rubio, J.: A mechanized proof of the Basic Perturbation Lemma. Journal of Automated Reasoning 40(4), 271–292 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barthe, G., Courtieu, P.: Efficient Reasoning about Executable Specifications in Coq. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bear, M., Connors, B., Paradiso, M.: Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins (2006)Google Scholar
  5. 5.
    Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In: ACM SIGPLAN Notices, pp. 268–279. ACM Press (2000)Google Scholar
  6. 6.
    Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination (2011), http://hal.inria.fr/inria-00593738
  7. 7.
    Coq development team. The Coq Proof Assistant, version 8.3. Technical report (2010)Google Scholar
  8. 8.
    Cuesto, G., et al.: Phosphoinositide-3-Kinase Activation Controls Synaptogenesis and Spinogenesis in Hippocampal Neurons. The Journal of Neuroscience 31(8), 2721–2733 (2011)CrossRefGoogle Scholar
  9. 9.
    Domínguez, C., Rubio, J.: Effective Homology of Bicomplexes, formalized in Coq. Theoretical Computer Science 412, 962–970 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo program. Institut Fourier, Grenoble (1998), http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
  11. 11.
    Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gonthier, G.: Formal proof - The Four-Color Theorem, vol. 55. Notices of the American Mathematical Society (2008)Google Scholar
  13. 13.
    Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. Journal of Formal Reasoning 3(2), 95–152 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Graham, P.: ANSI Common Lisp. Prentice Hall (1996)Google Scholar
  15. 15.
    Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., Siles, V.: Towards a certified computation of homology groups for digital images. In: Proceedings 4th International Workshoph on Computational Topology in Image Context (CTIC 2012). LNCS (to appear, 2012)Google Scholar
  16. 16.
    Heras, J., Mata, G., Poza, M., Rubio, J.: Homological processing of biomedical digital images: automation and certification. In: 17th International Conferences on Applications of Computer Algebra. Computer Algebra in Algebraic Topology and its Applications Session (2011)Google Scholar
  17. 17.
    Heras, J., Pascual, V., Rubio, J.: Proving with ACL2 the Correctness of Simplicial Sets in the Kenzo System. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 37–51. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Jacobson, N.: Basic Algebra II, 2nd edn. W. H. Freeman and Company (1989)Google Scholar
  19. 19.
    Jones, S.P., et al.: The Haskell 98 language and libraries: The revised report. Journal of Functional Programming 13(1), 0–255 (2003), http://www.haskell.org Google Scholar
  20. 20.
    Kaufmann, M., Moore, J.S.: ACL2 version 4.3 (2011)Google Scholar
  21. 21.
    Lambán, L., Martín-Mateos, F.J., Rubio, J., Ruiz-Reina, J.L.: Applying ACL2 to the Formalization of Algebraic Topology: Simplicial Polynomials. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 200–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Mörtberg, A.: Constructive algebra in functional programming and type theory. In: Mathematics, Algorithms and Proofs 2010 (2010), http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
  23. 23.
    Romero, A., Rubio, J.: Homotopy groups of suspended classifying spaces: an experimental approach. To be published in Mathematics of Computation (2012)Google Scholar
  24. 24.
    Romero, A., Sergeraert, F.: Discrete Vector Fields and Fundamental Algebraic Topology (2010), http://arxiv.org/abs/1005.5685v1
  25. 25.
    Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bulletin des Sciences Mathématiques 126(5), 389–412 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jónathan Heras
    • 1
  • María Poza
    • 1
  • Julio Rubio
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of La RiojaSpain

Personalised recommendations