Advertisement

Tableaux Modulo Theories Using Superdeduction

An Application to the Verification of B Proof Rules with the Zenon Automated Theorem Prover
  • Mélanie Jacquel
  • Karim Berkani
  • David Delahaye
  • Catherine Dubois
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)

Abstract

We propose a method which allows us to develop tableaux modulo theories using the principles of superdeduction, among which the theory is used to enrich the deduction system with new deduction rules. This method is presented in the framework of the Zenon automated theorem prover, and is applied to the set theory of the B method. This allows us to provide another prover to Atelier B, which can be used to verify B proof rules in particular. We also propose some benchmarks, in which this prover is able to automatically verify a part of the rules coming from the database maintained by Siemens IC-MOL.

Keywords

Tableaux Superdeduction Zenon Set Theory B Method Proof Rules Verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An Extensible Automated Theorem Prover Producing Checkable Proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brauner, P., Houtmann, C., Kirchner, C.: Principles of Superdeduction. In: Ong, L. (ed.) Logic in Computer Science (LICS), Wrocław (Poland), pp. 41–50. IEEE Computer Society Press (July 2007)Google Scholar
  4. 4.
    Houtmann, C.: Axiom Directed Focusing. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 169–185. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Verifying B Proof Rules Using Deep Embedding and Automated Theorem Proving. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 253–268. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mélanie Jacquel
    • 1
  • Karim Berkani
    • 1
  • David Delahaye
    • 2
  • Catherine Dubois
    • 3
  1. 1.Siemens IC-MOLChâtillonFrance
  2. 2.CEDRIC/CNAMParisFrance
  3. 3.INRIA/CEDRIC/ENSIIEÉvryFrance

Personalised recommendations