From Linear Temporal Logic Properties to Rewrite Propositions

  • Pierre-Cyrille Héam
  • Vincent Hugot
  • Olga Kouchnarenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)

Abstract

In the regular model-checking framework, reachability analysis can be guided by temporal logic properties, for instance to achieve the counter example guided abstraction refinement (CEGAR) objectives. A way to perform this analysis is to translate a temporal logic formula expressed on maximal rewriting words into a “rewrite proposition” – a propositional formula whose atoms are language comparisons, and then to generate semi-decision procedures based on (approximations of) the rewrite proposition. This approach has recently been studied using a nonautomatic translation method. The extent to which such a translation can be systematised needs to be investigated, as well as the applicability of approximated methods wherever no exact translation can be effected. This paper presents contributions to that effect: (1) we investigate suitable semantics for LTL on maximal rewriting words and their influence on the feasibility of a translation, and (2) we propose a general scheme providing exact results on a fragment of LTL corresponding mainly to safety formulæ, and approximations on a larger fragment.

Keywords

Temporal Logic Linear Temporal Logic Propositional Formula Reachability Analysis Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F. (ed.): RTA 2007. LNCS, vol. 4533. Springer, Heidelberg (2007)MATHGoogle Scholar
  2. 2.
    Bae, K., Meseguer, J.: The linear temporal logic of rewriting Maude model checker. In: Ölveczky [16], pp. 208–225Google Scholar
  3. 3.
    Boichut, Y., Genet, T., Jensen, T.P., Roux, L.L.: Rewriting approximations for fast prototyping of static analyzers. In: Baader [1], pp. 48–62Google Scholar
  4. 4.
    Boichut, Y., Héam, P.C., Kouchnarenko, O.: Approximation-based tree regular model-checking. Nord. J. Comput. 14(3), 216–241 (2008)Google Scholar
  5. 5.
    Boronat, A., Heckel, R., Meseguer, J.: Rewriting Logic Semantics and Verification of Model Transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 18–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Boyer, B., Genet, T.: Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems. In: RULE. EPTCS, vol. 21, pp. 99–108 (2009)Google Scholar
  7. 7.
    Courbis, R., Héam, P.-C., Kouchnarenko, O.: TAGED Approximations for Temporal Properties Model-Checking. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 135–144. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 243–320 (1990)Google Scholar
  9. 9.
    Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader [1], pp. 153–168Google Scholar
  10. 10.
    Filiot, E., Talbot, J.-M., Tison, S.: Tree Automata with Global Constraints. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 314–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 271–290. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Kamp, H.W.: Tense Logic and the Theory of Linear Order (1968)Google Scholar
  13. 13.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer (1995)Google Scholar
  14. 14.
    Meseguer, J.: The Temporal Logic of Rewriting: A Gentle Introduction. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 354–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Meseguer, J.: Conditioned Rewriting Logic as a United Model of Concurrency. TCS 96(1), 73–155 (1992)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ölveczky, P.C. (ed.): WRLA 2010. LNCS, vol. 6381. Springer, Heidelberg (2010)MATHGoogle Scholar
  17. 17.
    Serbanuta, T.F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational semantics. Inf. Comput. 207(2), 305–340 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre-Cyrille Héam
    • 1
  • Vincent Hugot
    • 1
  • Olga Kouchnarenko
    • 1
  1. 1.FEMTO-ST CNRS 6174, University of Franche-Comté & INRIA/CASSISFrance

Personalised recommendations