SPARQL Query Containment under RDFS Entailment Regime

  • Melisachew Wudage Chekol
  • Jérôme Euzenat
  • Pierre Genevès
  • Nabil Layaïda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7364)

Abstract

The problem of SPARQL query containment is defined as determining if the result of one query is included in the result of another for any RDF graph. Query containment is important in many areas, including information integration, query optimization, and reasoning about Entity-Relationship diagrams. We encode this problem into an expressive logic called μ-calculus: where RDF graphs become transition systems, queries and schema axioms become formulas. Thus, the containment problem is reduced to formula satisfiability test. Beyond the logic’s expressive power, satisfiability solvers are available for it. Hence, this study allows to exploit these advantages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expression patterns (for querying RDF). J. Web Semantics 7(2), 57–73 (2009)CrossRefGoogle Scholar
  2. 2.
    Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Barceló, P., Hurtado, C., Libkin, L., Wood, P.: Expressive languages for path queries over graph-structured data. In: PODS 2010, pp. 3–14. ACM (2010)Google Scholar
  4. 4.
    Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The Complexity of Enriched μ-Calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 540–551. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive Query Containment and Answering under Description Logics Constraints. ACM Trans. on Computational Logic 9(3), 22.1–22.31 (2008)Google Scholar
  6. 6.
    Calvanese, D., Ortiz, M., Simkus, M.: Containment of regular path queries under description logic constraints. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence, IJCAI 2011 (2011)Google Scholar
  7. 7.
    Calvanese, D., Rosati, R.: Answering Recursive Queries under Keys and Foreign Keys is Undecidable. In: Proc. of the 10th Int. Workshop on Knowledge Representation meets Databases (KRDB 2003), vol. 79, pp. 3–14 (2003)Google Scholar
  8. 8.
    Chekol, M.W., Euzenat, J., Genevès, P., Layaïda, N.: PSPARQL query containment. In: DBPL 2011 (August 2011)Google Scholar
  9. 9.
    Genevès, P., Layaïda, N., Schmitt, A.: Efficient Static Analysis of XML Paths and Types. In: PLDI 2007, pp. 342–351. ACM, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Glimm, B.: Using SPARQL with RDFS and OWL entailment. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 137–201. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Hayes, P.: RDF Semantics. W3C Recommendation (2004)Google Scholar
  12. 12.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. of KR 2006, pp. 57–67 (2006)Google Scholar
  13. 13.
    Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description Logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Ioannidis, Y.E.: Query Optimization. ACM Comput. Surv. 28(1), 121–123 (1996)CrossRefGoogle Scholar
  15. 15.
    Kozen, D.: Results on the propositional μ-calculus. Theor. Comp. Sci. 27, 333–354 (1983)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transactions on Database Systems (TODS) 34(3), 16 (2009)CrossRefGoogle Scholar
  17. 17.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec (2008)Google Scholar
  18. 18.
    Tanabe, Y., Takahashi, K., Hagiya, M.: A Decision Procedure for Alternation-Free Modal μ-calculi. In: Advances in Modal Logic, pp. 341–362 (2008)Google Scholar
  19. 19.
    Tanabe, Y., Takahashi, K., Yamamoto, M., Tozawa, A., Hagiya, M.: A Decision Procedure for the Alternation-Free Two-Way Modal μ-Calculus. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 277–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Melisachew Wudage Chekol
    • 1
  • Jérôme Euzenat
    • 1
  • Pierre Genevès
    • 2
  • Nabil Layaïda
    • 1
  1. 1.INRIA and LIGFrance
  2. 2.CNRSFrance

Personalised recommendations