Robust Output Feedback Interpolation Based Control for Constrained Linear Systems

  • Hoai-Nam Nguyen
  • Sorin Olaru
  • Per-Olof Gutman
  • Morten Hovd
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 174)

Abstract

In this paper, we consider the robust output feedback problem for constrained linear systems. A novel interpolation based control scheme is introduced, which guarantees feasibility and robust asymptotically stable closed loop behavior despite the presence of constraints on the input and output variables and the presence of the additive and bounded disturbances. A solution to the problem of the state representation is provided through the use of stored input values and the measured past outputs.

Keywords

Output Feedback Model Predictive Control State Space Model Disturbance Input Bounded Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mayne, D., Rakovic, S., Findeisen, R., Allgower, F.: Robust output feedback model predictive control of constrained linear systems. Automatica 42, 1217–1222 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Goulart, P., Kerrigan, E.: A method for robust receding horizon output feedback control of constrained systems. In: 2006 45th IEEE Conference on Decision and Control, pp. 5471–5476. IEEE (2007)Google Scholar
  3. 3.
    Wang, L., Young, P.: An improved structure for model predictive control using non-minimal state space realisation. Journal of Process Control 16, 355–371 (2006)CrossRefGoogle Scholar
  4. 4.
    Gutman, P., Cwikel, M.: Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states. IEEE Transactions on Automatic Control 31, 373–376 (1986)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Taylor, C., Chotai, A., Young, P.: State space control system design based on non-minimal state-variable feedback: further generalization and unification results. International Journal of Control 73, 1329–1345 (2000)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kolmanovsky, I., Gilbert, E.: Theory and computation of disturbance invariant sets for discrete-time linear systems. Mathematical Problems in Engineering 4, 317–363 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Rakovic, S., Kerrigan, E., Kouramas, K., Mayne, D.: Invariant approximations of the minimal robust positively invariant set. IEEE Transactions on Automatic Control 50, 406–410 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blanchini, F., Miani, S.: Set-theoretic methods in control. Springer (2008)Google Scholar
  9. 9.
    Blanchini, F.: Minimum-time control for uncertain discrete-time linear systems. In: Proceedings of the 31st IEEE Conference on Decision and Control, pp. 2629–2634 (1992)Google Scholar
  10. 10.
    Nguyen, H.N., Gutman, P.O., Olaru, S., Hovd, M., Colledani, F.: Improved vertex control for uncertain linear discrete-time systems with control and state constraints. In: American Control Conference. IEEE (2011)Google Scholar
  11. 11.
    Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-Parametric Toolbox (MPT). In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 448–462. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hoai-Nam Nguyen
    • 1
  • Sorin Olaru
    • 1
  • Per-Olof Gutman
    • 2
  • Morten Hovd
    • 3
  1. 1.(E3S) - Automatic Control DepartmentSupelec Systems SciencesGif sur YvetteFrance
  2. 2.Faculty of Civil and Environmental EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael
  3. 3.Department of Engineering CyberneticsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations