Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit

  • Nikolay Kuznetsov
  • Olga Kuznetsova
  • Gennady Leonov
  • Vladimir Vagaitsev

Abstract

Study of hidden oscillations and hidden chaotic attractors (basin of attraction of which does not contain neighborhoods of equilibria) requires the development of special analytical-numerical methods. Development and application of such methods for localization of hidden chaotic attractors in dynamical model of Chua’s circuit are demonstrated in this work.

Keywords

Hidden oscillation Chua circuit Hidden attractor localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Rossler, O.E.: An Equation for Continuous Chaos. Physics Letters 57A(5), 397–398 (1976)CrossRefGoogle Scholar
  3. 3.
    Chua, L.O., Lin, G.N.: Canonical Realization of Chua’s Circuit Family. IEEE Transactions on Circuits and Systems 37(4), 885–902 (1990)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcation and Chaos. 9, 1465–1466 (1999)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Leonov, G.A., Kuznetsov, N.V., Vagaytsev, V.I.: Localization of hidden Chua’s attractors. Physics Letters A 375(35), 2230–2233 (2011), doi:10.1016/j.physleta.2011.04.037MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Leonov, G.A.: On the method of harmonic linearization. Automation and remote controle 70(5), 800–810 (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Leonov, G.A.: On the Aizerman problem. Automation and Remote Control 70(7), 1120–1131 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Leonov, G.A.: Effective methods for periodic oscillations search in dynamical systems. App. Math. & Mech. 74(1), 24–50 (2010)CrossRefGoogle Scholar
  9. 9.
    Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Algorithm for localizing Chua attractors based on the harmonic linearization method. Doklady Mathematics 82(1), 663–666 (2010)MATHCrossRefGoogle Scholar
  10. 10.
    Leonov, G.A., Bragin, V.O., Kuznetsov, N.V.: Algorithm for Constructing Counterexamples to the Kalman Problem. Doklady Mathematics 82(1), 540–542 (2010)MATHCrossRefGoogle Scholar
  11. 11.
    Kuznetsov, N.V., Leonov, G.A.: Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems. Journal of Vibroengineering 10(4), 460–467 (2008)Google Scholar
  12. 12.
    Leonov, G.A., Kuznetsov, N.V.: Limit cycles of quadratic systems with a perturbed weak focus of order 3 and a saddle equilibrium at infinity. Doklady Mathematics 82(2), 693–696 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Leonov, G.A., Kuznetsov, N.V., Kudryashova, E.V.: A Direct Method for Calculating Lyapunov Quantities of Two-Dimensional Dynamical Systems. In: Proceedings of the Steklov Institute Of Mathematics, vol. 272(suppl. 1), pp. S119–S127 (2011)Google Scholar
  14. 14.
    Chua, L.O.: A Zoo of Strange Attractors from the Canonical Chua’s Circuits. In: Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 916–926 (1992)Google Scholar
  15. 15.
    Chua, L.O.: A Glimpse of Nonlinear Phenomena from Chua’s Oscillator. Philosophical Transactions: Physical Sciences and Engineering 353, 3–12 (1995)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bilotta, E., Pantano, P.: A gallery of Chua attractors. World scientific series on nonlinear science (2008)Google Scholar
  17. 17.
    Shi, Z., Hong, S., Chen, K.: Experimental study on tracking the state of analog Chua’s circuit with particle filter for chaos synchronization. Physics Letters A 372(34), 5575–5580 (2008)CrossRefGoogle Scholar
  18. 18.
    Leonov, G.A., Kuznetsov, N.V.: Time-Varying Linearization and the Perron effects. International Journal of Bifurcation and Chaos 17(4), 1079–1107 (2007)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Savaci, F.A., Gunel, S.: Harmonic Balance Analysis of the Generalized Chua’s Circuit. International Journal of Bifurcation and Chaos 16(8), 2325–2332 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Suykens, J.A.K., Huang, A., Chua, L.O.: A Family of n-scroll Attractors from a Generalized Chua’s Circuit. AEU-International Journal of Electronics & Communications 51(3), 131–138 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nikolay Kuznetsov
    • 1
    • 2
  • Olga Kuznetsova
    • 1
    • 2
  • Gennady Leonov
    • 2
  • Vladimir Vagaitsev
    • 1
    • 2
  1. 1.MIT DepartmentUniversity of JyväskyläAgoraFinland
  2. 2.Applied Cybernetics DepartmentSt.Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations