Future Prospect of Nanoelectronic Devices

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 175)

Abstract

A significant approach to enhance information throughput beyond the traditional scaling is to integrate the best features of the current memories into a fabrication technology compatible with CMOS technology process with better scalability than SRAM and FLASH [1]. The fabrication technology should be applicable to both stand-alone and embedded memory applications. A major detractor of MPU ability to execute programs is the time delay needed for transferring data between the processor and memory. Such a fabrication technology can increase MPU cache memory which yields a much faster data processing. Furthermore, the development of high speed and high density random access nonvolatile memory is a great success in computer architecture.

Keywords

Domain Wall Phase Change Material Ferromagnetic Layer Memory Element Free Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The International Technology Roadmap for Semiconductors (ITRS) (2009)Google Scholar
  2. 2.
    Bohr, M.: The new era of scaling in an SoC world. In: IEEE Int. Solid-State Circuits Conf., pp. 23–28 (2009)Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Kumar, R., Hinton, G.: A family of 45nm IA processors. In: IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 58–59 (2009)Google Scholar
  6. 6.
    Zhang, K., et al.: A SRAM design on 65nm CMOS technology with integrated leakage reduction scheme. In: Symp. VLSI Circuits, pp. 294–295 (June 2004)Google Scholar
  7. 7.
    Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370), 1716–1721 (1998)Google Scholar
  8. 8.
    Likharev, K.: Electronics below 10 nm. In: Greer, J., Korkin, A., Labanowski, J. (eds.) Nano and Giga Challenges in Microelectronics, pp. 27–68. Elsevier, Amsterdam (2003)Google Scholar
  9. 9.
    Likharev, K.K., Mayr, A., Muckra, I., Türel, Ö.: CrossNets: high-performance neuromorphic architectures for CMOL circuits. Annals of the New York Academy of Sciences 1006, 146–163 (2003)Google Scholar
  10. 10.
    Chen, A., Haddad, S., Wu, Y.-C.(J.), Fang, T.-N., Lan, Z., Avanzino, S., Pangrle, S., Buynoski, M., Rathor, M., Cai, W.(D.), Tripsas, N., Bill, C., VanBuskirk, M., Taguchi, M.: Non-volatile resistive switching for advanced memory applications. In: IEDM Tech. Dig., pp. 746–749 (2005)Google Scholar
  11. 11.
    Strukov, D., Likharev, K.K.: Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1), 137–148 (2005)Google Scholar
  12. 12.
    Türel, Ö., Lee, J.H., Ma, X., Likharev, K.K.: Neuromorphic architectures for nanoelectronic circuits. Int. J. Circuit Theory Appl. 32(5), 277–302 (2004)Google Scholar
  13. 13.
    Likharev, K.K.: Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. Journal of Nanoelectronics and Optoelectronics 3(3), 203–230 (2008)Google Scholar
  14. 14.
    Cooke, M.: Digital III-Vs review. III-Vs Review: The Advanced Semiconductor Magazine 19(3) (2006)Google Scholar
  15. 15.
    Datta, S.: III-V field-effect transistors for low power digital logic applications. Microelectronic Engineering 84(9-10), 2133–2137 (2007)Google Scholar
  16. 16.
    Cui, Y., Zhong, Z., Wang, D., Wang, W., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano. Lett. 3(2), 149–152 (2003)Google Scholar
  17. 17.
    Yang, F.-L., Lee, D.-H., Chen, H.-Y., Chang, C.-Y., Liu, S.-D., Huang, C.-C., Chung, T.-X., Chen, H.-W., Huang, C.-C., Liu, Y.-H., Wu, C.-C., Chen, C.-C., Chen, S.-C., Chen, Y.-T., Chen, Y.-H., Chen, C.-J., Chan, B.-W., Hsu, P.-F., Shieh, J.-H., Tao, H.-J., Yeo, Y.-C., Li, Y., Lee, J.-W., Chen, P., Liang, M.-S., Hu, C.: 5 nm gate nanowire FET. In: Symp. VLSI Tech. Dig., pp. 196–197 (2004)Google Scholar
  18. 18.
    Majima, H., Saito, Y., Hiramoto, T.: Impact of quantum mechanical effects on design of nano-scale narrow channel n- and p-type MOSFETs. In: IEDM Tech. Dig., pp. 951–954 (2001)Google Scholar
  19. 19.
    Singh, N., Lim, F.Y., Fang, W.W., Rustagi, S.C., Bera, L.K., Agarwal, A., Tung, C.H., Hoe, K.M., Omampuliyur, S.R., Tripathi, D., Adeyeye, A.O., Lo, G.Q., Balasubramanian, N., Kwong, D.L.: Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter, channel-orientation and low temperature on device performance. IEDM Tech. Dig., Session 20, 1–4 (2006)Google Scholar
  20. 20.
    Cho, K.H., Suk, S.D., Yeoh, Y.Y., Li, M., Yeo, K.H., Kim, D.-W., Hwang, S.W., Park, D., Ryu, B.-I.: Observation of single electron tunneling and ballistic transport in twin silicon nanowire MOSFETs (TSNWFETs) fabricated by top down CMOS process. IEDM Tech. Dig., Session 20, 1–4 (2006)Google Scholar
  21. 21.
    Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006)Google Scholar
  22. 22.
    Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Devices 55(6), 1286–1297 (2008)Google Scholar
  23. 23.
    Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4(7), 1247–1252 (2004)Google Scholar
  24. 24.
    Bryllert, T., Wernersson, L.-E., Froberg, L.E., Samuelson, L.: Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 27(5), 323–325 (2006)Google Scholar
  25. 25.
    Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006)Google Scholar
  26. 26.
    Bjork, M.T., Hayden, O., Schmid, H., Riel, H., Riess, W.: Vertical surround-gated silicon nanowire impact ionization field-effect transistors. Appl. Phys. Lett. 90(14), 142110 (2007)Google Scholar
  27. 27.
    Thelander, C., Fröberg, L.E., Rehnstedt, C., Samuelson, L., Wernersson, L.-E.: Vertical enhancement-mode InAs nanowire field-effect transistor with 50-nm wrap gate. IEEE Electron Device Letters 29(3), 206–208 (2008)Google Scholar
  28. 28.
    Bjork, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., Samuelson, L.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80(6), 1058–1060 (2002)Google Scholar
  29. 29.
    Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)Google Scholar
  30. 30.
    Mårtensson, T., Wagner, J.B., Hilner, E., Mikkelsen, A., Thelander, C., Stangl, J., Ohlsson, B.J., Gustafsson, A., Lundgren, E., Samuelson, L., Seifert, W.: Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings. Advanced Materials 19(14), 1801–1806 (2007)Google Scholar
  31. 31.
    Liow, T.-Y., Tan, K.-M., Lee, R.T.P., Zhu, M., Tan, B.L.-H., Balasubramanian, N., Yeo, Y.-C.: Germanium source and drain stressors for ultrathin-body and nanowire field-effect transistors. IEEE Electron Device Letters 29(7), 808–810 (2008)Google Scholar
  32. 32.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)Google Scholar
  33. 33.
    Dekker, C.: Carbon nanotubes as molecular quantum wires. Physics Today 52(5), 22–28 (1999)Google Scholar
  34. 34.
    Ajayan, P.M.: Nanotubes from carbon. Chemical Reviews 99(7), 1787–1799 (1999)Google Scholar
  35. 35.
    Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1995)Google Scholar
  36. 36.
    Saito, R., Dresselhaus, M.S., Dresselhaus, G.: Physical Properties of Carbon Nanotubes. World Scientific, New York (1998)Google Scholar
  37. 37.
    Tanaka, K., Yamabe, T., Fukui, K.: The Science and Technology of Carbon Nanotubes. Elsevier, Oxford (1999)Google Scholar
  38. 38.
    Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon Nanotubes. Springer, Berlin (2000)Google Scholar
  39. 39.
    Chen, Z.: Nanotubes for nanoelectronics. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 7, pp. 919–942. American Scientific Publishers, Thousand Oaks (2004)Google Scholar
  40. 40.
    Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. Proceedings of the IEEE 91(11), 1772–1784 (2003)Google Scholar
  41. 41.
    Guo, J., Lundstrom, M., Datta, S.: Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett. 80(17), 3192–3194 (2002)Google Scholar
  42. 42.
    Clifford, J.P., John, D.L., Castro, L.C., Pulfrey, D.L.: Electrostatics of partially gated carbon nanotube FETs. IEEE Trans. Nanotechnol. 3(2), 281–286 (2004)Google Scholar
  43. 43.
    Appenzeller, J.: Carbon nanotubes for high-performance electronics: progress and prospect. Proceedings of the IEEE 96(2) (2008)Google Scholar
  44. 44.
    Tans, S.J., Verschueren, A., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–51 (1998)Google Scholar
  45. 45.
    Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447–2449 (1998)Google Scholar
  46. 46.
    Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transistors. Science 294(5545), 1317–1320 (2001)Google Scholar
  47. 47.
    Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High-k dielectric for advanced carbon-nanotube transistors and logic gates. Nature Mater 1(4), 241–246 (2002)Google Scholar
  48. 48.
    Wind, S., Appenzeller, J., Martel, R., Derycke, V., Avouris, P.: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80(20), 3817–3819 (2002)Google Scholar
  49. 49.
    Zhang, Z.Y., Wang, S., Ding, L., Liang, X.L., Xu, H.L., Shen, J., Chen, Q., Cui, R.L., Li, Y., Peng, L.-M.: High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Appl. Phys. Lett. 92, 133117 (2008)Google Scholar
  50. 50.
    Zhang, Z.Y., Wang, S., Ding, L., Liang, X.L., Pei, T., Shen, J., Xu, H., Chen, Q., Cui, R., Li, Y., Peng, L.-M.: Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Letters 8(11), 3696–3701 (2008)Google Scholar
  51. 51.
    Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.J.: Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003)Google Scholar
  52. 52.
    Zhang, Z., Liang, X., Wang, S., Yao, K., Hu, Y., Zhu, Y., Chen, Q., Zhou, W., Li, Y., Yao, Y., Zhang, J., Peng, L.-M.: Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Letters 7(12), 3603–3607 (2007)Google Scholar
  53. 53.
    Ding, L., Wang, S., Zhang, Z., Zeng, Q., Wang, Z., Pei, T., Yang, L., Liang, X., Shen, J., Chen, Q., Cui, R., Li, Y., Peng, L.-M.: Y-Contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Letters 9(12), 4209–4214 (2009)Google Scholar
  54. 54.
    Duerkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004)Google Scholar
  55. 55.
    Paul, B.C., Fujita, S., Okajima, M., Lee, T.H., Wong, H.-S.P., Nishi, Y.: Impact of a process variation on nanowire and nanotube device performance. IEEE Trans. Electron Devices 54(9), 2369–2376 (2007)Google Scholar
  56. 56.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)Google Scholar
  57. 57.
    Bolotina, K.I., Sikesb, K.J., Jianga, Z., Klimac, M., Fudenberga, G., Honec, J., Kima, P., Stormera, H.L.: Ultrahigh electron mobility in suspended grapheme. Solid State Communications 146(9-10), 351–355 (2008)Google Scholar
  58. 58.
    Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954–17961 (1996)Google Scholar
  59. 59.
    Wakabayashi, K.: Electronic transport properties of nanographite ribbon junctions. Phys. Rev. B 64(12), 125428 (2001)Google Scholar
  60. 60.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)Google Scholar
  61. 61.
    Obradovic, B., Kotlyar, R., Heinz, F., Matagne, P., Rakshit, T., Giles, M.D., Stettler, M.A., Nikonov, D.E.: Analysis of graphene nanoribbons as a channel material for field-effect transistors. Applied Physics Letters 88(14), 142102 (2006)Google Scholar
  62. 62.
    Gu, G., Nie, S., Feenstra, R.M., Devaty, R.P., Choyke, W.J., Chan, W.K., Kane, M.G.: Field effect in epitaxial graphene on a silicon carbide substrate. Appl. Phys. Lett. 90(25), 253507 (2007)Google Scholar
  63. 63.
    Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Da, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008)Google Scholar
  64. 64.
    Wu, Y.Q., Ye, P.D., Capano, M.A., Xuan, Y., Sui, Y., Qi, M., Cooper, J.A., Shen, T., Pandey, D., Prakash, G., Reifenberger, R.: Top-gated graphene field-effect-transistors formed by decomposition of SiC. Applied Physics Letters 92(9), 92102 (2008)Google Scholar
  65. 65.
    Liao, L., Bai, J., Lin, Y.-C., Qu, Y., Huang, Y., Duan, X.: High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Advanced Materialts 22(17), 1941–1945 (2010)Google Scholar
  66. 66.
    Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature 438(7065), 201–204 (2005)Google Scholar
  67. 67.
    Berger, Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006)Google Scholar
  68. 68.
    Ouyang, Y., Yoon, Y., Fodor, J.K., Guo, J.: Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors. Appl. Phys. Lett. 89(20), 203107 (2006)Google Scholar
  69. 69.
    Ouyang, Y., Dai, H., Guo, J.: Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Research 3(1), 8–15 (2010)Google Scholar
  70. 70.
    Averin, D.V., Likharev, K.K.: Single electronics: a correlated transfer of single electrons and Cooper pairs in systems of small tunnel junctions. In: Altshuler, B.L., Lee, P.A., Webb, R.A. (eds.) Mesoscopic Phenomena in Solids, pp. 173–271. Elsevier Science, New York (1991)Google Scholar
  71. 71.
    Grabert, H., Devoret, M.H. (eds.): Single Charge Tunnelling. Plenum, New York (1992)Google Scholar
  72. 72.
    Ono, Y., Fujiwara, A., Nishiguchi, K., Inokawa, H., Takahashi, Y.: Manipulation and detection of single electrons for future information processing. J. Appl. Phys. 97(1), 031101 (2005)Google Scholar
  73. 73.
    Tan, Y.T., Kamiya, T., Durrani, Z.A.K., Ahmed, H.: Room temperature nanocrystalline silicon single-electron transistors. J. Applied Physics 94, 633–637 (2003)Google Scholar
  74. 74.
  75. 75.
    Uchida, K.: Single-electron devices for logic applications. In: Waser, R. (ed.) Nanoelectronics and Information Technology. dvanced Electronic Materials and Novel Devices, pp. 425–444. John Wiley & Sons, New York (2003)Google Scholar
  76. 76.
    Saitoh, M., Hiramoto, T.: Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic series resistance. J. Applied Physics 91(10), 6725–6728 (2001)Google Scholar
  77. 77.
    Chen, J., Reed, M.A., Dirk, S.M., Price, D.W., Rawlett, A.M., Tour, J.M., Grubisha, D.S., Bennett, D.W.: Molecular electronic devices. In: Barsanti, L., Evangelista, V., Gualtieri, P., Passarelli, V., Vestri, S. (eds.) Molecular Electronics: Bio-sensors and Bio-computers, pp. 59–196. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  78. 78.
    Goldhaber-Gordon, D., Montemerlo, M.S., Love, J.C., Opiteck, G.J., Ellenbogen, J.C.: Overview of nanoelectronic devices. Proceedings of the IEEE 85(4), 521–540 (1997)Google Scholar
  79. 79.
    Bourianoff, G., Brewer, J.E., Cavin, R., Hutchby, J.A., Zhirnov, V.: Boolean logic and alternative information-processing devices. Computer- IEEE Computer Society 41(5), 38–47 (2008)Google Scholar
  80. 80.
    Ellenbogen, J.C.: A brief overview of nanoelectronic devices. In: Government Microelectronics Applications Conf., pp. 13–16 (January 1998)Google Scholar
  81. 81.
    Mann, B., Kuhn, H.: Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42(11), 4398–4405 (1971)Google Scholar
  82. 82.
    Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)Google Scholar
  83. 83.
    Jäckel, F.: Self-Assembly and Electronic Properties of Conjugated Molecules: Towards Mono-Molecular Electronics. PhD Thesis, Humboldt-Universität zu Berlin (2005)Google Scholar
  84. 84.
    Vuillaume, D.: Molecular-scale electronics. Comptes Rendus Physique 9(1), 78–94 (2008)Google Scholar
  85. 85.
    Langmuir, I.: The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 15, 62–74 (1920)Google Scholar
  86. 86.
    Blodgett, K.B.: Monomolecular films of fatty acids on glass. J. Am. Chem. Soc. 56(2), 495–495 (1934)Google Scholar
  87. 87.
    Blodgett, K.B.: Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc. 57(6), 1007–1022 (1935)Google Scholar
  88. 88.
    Chen, J., Lee, T., Su, J., Wang, W., Reed, M.A., Rawlett, A.M., Kozaki, M., Yao, Y., Jagessar, R.C., Dirk, S.M., Price, D.W., Tour, J.M., Grubisha, D.S., Bennett, D.W.: Molecular electronic devices. In: Reed, M.A., Lee, T. (eds.) Molecular Nanoelectronics. American Scientific Publishers, New York (2003)Google Scholar
  89. 89.
    Reed, M.A.: U.S. Patent 5589629 (1996)Google Scholar
  90. 90.
    Muller, C.J., van Ruitenbeek, J.M., de Jongh, L.J.: Experimental observation of the transition from weak link to tunnel junction. Physica C: Superconductivity 191(3-4), 485–504 (1992)Google Scholar
  91. 91.
    Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Conductance of a molecular junction. Science 278(5336), 252–254 (1997)Google Scholar
  92. 92.
    Kergueris, C., Bourgoin, J.P., Palacin, S., Esteve, D., Urbina, C., Magoga, M., Joachim, C.: Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59(19), 12505–12513 (1999)Google Scholar
  93. 93.
    Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P., McEuen, P.L.: Nanomechanical oscillations in single-C60 transisor. Nature 407(6800), 57–60 (2000)Google Scholar
  94. 94.
    Liang, W., Shores, M.P., Bockrath, M., Long, J.R., Park, H.: Kondo resonance in a single molecule transistor. Nature 417(6890), 725–729 (2002)Google Scholar
  95. 95.
    Joachim, C., Gimzewski, J.K.: An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265(3-5), 353–357 (1997)Google Scholar
  96. 96.
    The International Technology Roadmap for Semiconductors (ITRS) (2007)Google Scholar
  97. 97.
    Hipps, K.W.: Molecular electronics-It’s all about contacts. Science 294(5542), 536–537 (2001)Google Scholar
  98. 98.
    Boer, B., Frank, M.M., Chabal, Y.J., Jiang, W., Garfunkel, E., Bao, Z.: Metallic contact formation for molecular electronics: Interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols. Langmuir 20(5), 1539–1542 (2004)Google Scholar
  99. 99.
    Haynie, B.C., Walker, A.V., Tighe, T.B., Allara, D.L., Winograd, N.: Adventures in molecular electronics: How to attach wires to molecules. Appl. Surf. Sci. 203, 433–436 (2003)Google Scholar
  100. 100.
    Martin, Z.L., Majumdar, N., Cabral, M.J., Gergel-Hackett, N., Camacho-Alanis, F., Swami, N., Bean, J.C., Harriott, L.R., Yao, Y., Tour, J.M., Long, D., Shashidhar, R.: Fabrication and characterization of interconnected nanowell molecular electronic devices in crossbar architecture. IEEE Trans. Nanotechnology 8(5), 574–581 (2009)Google Scholar
  101. 101.
    Lortschner, E., Tour, J.M., Ciszek, J.W., Riel, H.: A single-molecule switch and memory element. J. Physics: Conf. Series 61(1), 987–991 (2007)Google Scholar
  102. 102.
    Strukov, D.B.: Hybrid semiconductor-molecular integrated circuits for digital electronics: CMOL approach. In: Nanoelectronics and Photonics, Nanostructure Science and Technology, ch. 4, pp. 15–57. Springer, New York (2008)Google Scholar
  103. 103.
    Gergel-Hackett, N., Hill, A.A., Hacker, C.A., Richter, C.A.: The integration of molecular electronic devices with traditional CMOS technologies. In: IEEE Conf. Nanotechnology, pp. 522–525 (2008)Google Scholar
  104. 104.
    McMichael, R.D., Donahue, M.J.: Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magnetics 33(5), 4167–4169 (1997)Google Scholar
  105. 105.
    Ono, T., Miyajima, H., Shigeto, K., Mibu, K., Hosoito, N., Shinjo, T.: Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284(5413), 468–470 (1999)Google Scholar
  106. 106.
    Allwood, D.A., Xiong, G., Cooke, M.D., Faulkner, C.C., Atkinson, D., Vernier, N., Cowburn, R.P.: Submicrometer ferromagnetic NOT gate and shift register. Science 296(5575), 2003–2006 (2002)Google Scholar
  107. 107.
    Atkinson, D., Allwood, D.A., Xiong, G., Cooke, M.D., Faulkner, C.C., Cowburn, R.P.: Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nature Materials 2(2), 85–87 (2003)Google Scholar
  108. 108.
    Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005)Google Scholar
  109. 109.
    Hayashi, M.: Current Driven Dynamics of Magnetic Domain Walls in Permalloy Nanowires. Ph.D. Thesis, Stanford University (2006)Google Scholar
  110. 110.
    Berger, L.: Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Applied Physics 55(6), 1954–1956 (1984)Google Scholar
  111. 111.
    Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magnetism and Magnetic Materials 159(1-2), L1–L7 (1996)Google Scholar
  112. 112.
    Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80(19), 4281–4284 (1998)Google Scholar
  113. 113.
    Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N., Buhrman, R.A.: Current-induced switching of domains in magnetic multilayer devices. Science 285(5429), 867–870 (1999)Google Scholar
  114. 114.
    Xu, P., Xia, K., Gu, C., Tang, L., Yang, H., Li, J.: An all-metallic logic gate based on current-driven domain wall motion. Nature Nanotechnology 3(2), 97–100 (2008)Google Scholar
  115. 115.
    Hayashi, M., Thomas, L., Rettner, C., Moriya, R., Bazaliy, Y.B., Parkin, A.S.P.: Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98(3), 37204 (2007)Google Scholar
  116. 116.
    Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P.: Current-controlled magnetic domain-wall nanowire shift register. Science 320(5873), 209–211 (2008)Google Scholar
  117. 117.
    Hara, M., Kimura, T., Otani, Y.: Controlled depinning of domain walls in a ferromagnetic ring circuit. Applied Physics Letters 90(24), 242504 (2007)Google Scholar
  118. 118.
    Waintal, X., Viret, M.: Current-induced distortion of a magnetic domain wall. Europhysics Letters 65(3), 427–433 (2004)Google Scholar
  119. 119.
    Shibata, J., Tatara, G., Kohno, H.: Effect of spin current on uniform ferromagnetism: domain nucleation. Phys. Rev. Lett. 94(7), 076601 (2005)Google Scholar
  120. 120.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)Google Scholar
  121. 121.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)Google Scholar
  122. 122.
    Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)Google Scholar
  123. 123.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)Google Scholar
  124. 124.
    Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G.H., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: review and recent experiments. J. Appl. Phys. 85(8), 4283–4285 (1999)Google Scholar
  125. 125.
    Tótha, G., Lent, C.S.: Role of correlation in the operation of quantum-dot cellular automata. J. Appl. Phys. 89(12), 7943–7953 (2001)Google Scholar
  126. 126.
    Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)Google Scholar
  127. 127.
    Varga, G.: Investigation of possibility of high temperature quantum-dot cellular automata. Journal of Physics: Conference Series 61, 1216–1220 (2007)Google Scholar
  128. 128.
    Bernstein, G.H., Imre, A., Metlushko, V., Orlov, A., Zhou, L., Ji, L., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectronics Journal 36(7), 619–624 (2005)Google Scholar
  129. 129.
    Prinz, G.A.: Magnetoelectronics. Science 282(5394), 1660–1663 (1988)Google Scholar
  130. 130.
    Sarma, S.D., Fabian, J., Hu, X., Žutić, I.: Spin electronics and spin computation. Solid State Comunication 119(4-5), 207–215 (2001)Google Scholar
  131. 131.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)Google Scholar
  132. 132.
    Awschalom, D.D., Loss, D., Samarth, N.: Semiconductor Spintronics and Quantum Computation. Springer, Berlin (2002)Google Scholar
  133. 133.
    Žutić, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Reviews of Modern Physics 76(2), 323–410 (2004)Google Scholar
  134. 134.
    Rashba, E.I.: Semiconductor spintronics: progress and challenges. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics, pp. 28–40. John Wiley & Sons, Hoboken (2007)Google Scholar
  135. 135.
    Parkin, S.S.P., Jiang, X., Kaiser, C., Panchula, A., Roche, K., Samant, M.: Magnetically engineered spintronic sensors and memory. Proceedings of the IEEE 91(5), 661–680 (2003)Google Scholar
  136. 136.
    Žutić, I., Fabian, J.: Towards semiconductor spin logic. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics, pp. 40–50. John Wiley & Sons, Hoboken (2007)Google Scholar
  137. 137.
    Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)Google Scholar
  138. 138.
    Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, Condens. Matter 39(7), 4828–4830 (1989)Google Scholar
  139. 139.
    Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D.: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B, Condens. Matter 43(1), 1297–1300 (1991)Google Scholar
  140. 140.
    Daughton, J., Brown, J., Chen, E., Beech, R., Pohm, A., Kude, W.: Magnetic field sensors using GMR multilayer. IEEE Trans. Magn. 30(6), 4608–4610 (1994)Google Scholar
  141. 141.
    Flatté, M.E.: Spintronics. IEEE Trans. Electron Device 54(5), 907–920 (2007)Google Scholar
  142. 142.
    Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995)Google Scholar
  143. 143.
    Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004)Google Scholar
  144. 144.
    Mott, N.F.: The electrical conductivity of transition metals. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 153(880), 699–717 (1936)Google Scholar
  145. 145.
    Gregg, J.F., Petej, I., Jouguelet, E., Dennis, C.: Spin electronics-a review. Journal of Physics D: Applied Physics 35(18), R121–R155 (2002)Google Scholar
  146. 146.
    Coey, J.M.D.: Materials for Spin Electronics. In: Ziese, M., Thornton, M.J. (eds.) Spin Electronics, pp. 277–297. Springer, Berlin (2001)Google Scholar
  147. 147.
    Johnson, M., Silsbee, R.H.: Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55(17), 1790–1793 (1985)Google Scholar
  148. 148.
    Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P., Žutić, I.: Semiconductor spintronics. Acta Physica Slovaca 57(4-5), 565–907 (2007)Google Scholar
  149. 149.
    Ando, K.: Seeking room-temperature ferromagnetic semiconductors. Science 312(5782), 1883–1885 (2006)Google Scholar
  150. 150.
    Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990)Google Scholar
  151. 151.
    Johnson, M.: Bipolar spin switch. Science 260(5106), 320–323 (1993)Google Scholar
  152. 152.
    Monsma, D.J., Lodder, J.C., Popma, T.J.A., Dieny, B.: Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor. Phys. Rev. Lett. 74(26), 5260–5263 (1995)Google Scholar
  153. 153.
    Mizushima, K., Kinno, T., Yamauchi, T., Tanaka, K.: Energy-dependent hot electron transport across a spinvalve. IEEE Trans. Magn. 33(5), 3500–3504 (1997)Google Scholar
  154. 154.
    Monsma, D.J., Vlutters, R., Lodder, J.C.: Room temperature-operating spin-valve transistors formed by vacuum bonding. Science 281(5375), 407–409 (1998)Google Scholar
  155. 155.
    Monsma, D.J.: The Spin-valve Transistor: Perpendicular Hot Electron Spin-valve Effect in a New Vacuum Bonded Magnetic Field Sensor and Spectroscopic Measurement Tool. PhD Thesis, University of Twente, Enschede, The Netherlands (1998)Google Scholar
  156. 156.
    Anil Kumar, P.S., Jansen, R., van’t Erve, O.M.J., Vlutters, R., de Haan, P., Lodder, J.C.: Low-field magnetocurrent above 200% in a spin-valve transistor at room temperature. J. Magnetism and Magnetic Materials 214(1-2), L1–L6 (2000)Google Scholar
  157. 157.
    Anil Kumar, P.S., Jansen, R., van’t Erve, O.M.J., Vlutters, R., Kim, S.D., Lodder, J.C.: 300% magnetocurrent in a room temperature operating spin-valve transistor. Physica C: Superconductivity 350(3-4), 166–170 (2001)Google Scholar
  158. 158.
    Sarma, S.D.: Spintronics. American Scientist 89(6), 516–523 (2001)Google Scholar
  159. 159.
    Flatté, M.E., Vignale, G.: Unipolar spin diodes and transistors. Appl. Phys. Lett. 78(9), 1273–1275 (2001)Google Scholar
  160. 160.
    Fabian, J., Žutić, I., Das Sarma, S.: Theory of spin-polarized bipolar transport in magnetic p-n junctions. Phys. Rev. B 66(16), 165301 (2002)Google Scholar
  161. 161.
    van Dijken, S., Jiang, X., Parkin, S.S.P.: Nonmonotonic bias voltage dependence of the magnetocurrent in GaAs-based magnetic tunnel transistors. Phys. Rev. Lett. 90(19), 197203 (2003)Google Scholar
  162. 162.
    Jansen, R.: The spin-valve transistor: a review and outlook. J. Phys. D. Appl. Phys. 36(19), R289–R308 (2003)Google Scholar
  163. 163.
    Flatté, M.E., Yu, Z.G., Johnston-Halperin, E., Awschalom, D.D.: Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 82(26), 4740–4742 (2003)Google Scholar
  164. 164.
    Hall, K., Lau, W.H., Gündoğdu, K., Flatté, M.E., Boggess, T.F.: Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett. 83(14), 2937–2939 (2003)Google Scholar
  165. 165.
    Schliemann, J., Egues, J.C., Loss, D.: Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90(14), 146801 (2003)Google Scholar
  166. 166.
    Cartoixa, X., Ting, D.Z.-Y., Chang, Y.-C.: A resonant spin lifetime transistor. Appl. Phys. Lett. 83(7), 1462–1464 (2003)Google Scholar
  167. 167.
    Fabian, J., Žutić, I., Sarma, S.D.: Magnetic bipolar transistor. Appl. Phys. Lett. 84(1), 85–87 (2004)Google Scholar
  168. 168.
    Huang, Y.W., Lo, C.K., Yao, Y.D., Hsieh, L.C., Huang, J.H.: Spin-valve transistor. J. Appl. Phys. 97(10), 10D504 (2005)Google Scholar
  169. 169.
    Mizuno, Y., Ohya, S., Hai, P.N., Tanaka, M.: Spin-dependent transport properties in GaMnAs-based spin hot-carrier transistors. Appl. Phys. Lett. 90(16), 162505 (2007)Google Scholar
  170. 170.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. John Wiley & Sons, New York (1998)Google Scholar
  171. 171.
    Saikin, S., Pershin, Y.V., Privman, V.: Modelling for semiconductor spintronics. IEE Proc.-Circuits Devices Syst. 152(4), 366–376 (2005)Google Scholar
  172. 172.
    Dresselhaus, G.: Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100(2), 580–586 (1955)MATHGoogle Scholar
  173. 173.
    Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17(33), 6039–6045 (1984)Google Scholar
  174. 174.
    Koo, H.C., Kwon, J.H., Eom, J., Chang, J., Han, S.H., Johnson, M.: Control of spin precession in a spin-injected field effect transistor. Science 325(5947), 1515–1518 (2009)Google Scholar
  175. 175.
    Agnihotri, P., Bandyopadhyay, S.: Analysis of the two dimensional Datta-Das spin field effect transistor. Physica E 42(5), 1736–1740 (2010)Google Scholar
  176. 176.
    Semenov, Y.G., Kim, K.W., Zavada, J.M.: Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91(15), 153105 (2007)Google Scholar
  177. 177.
    Gerchikov, L.G., Subashiev, A.V.: Spin splitting of size-quantization subbands in asymmetric heterostructures. Soviet physics Semiconductors 26(1), 73–78 (1992)Google Scholar
  178. 178.
    Winkler, R., Hoh, H., Tutuc, E., Shayegan, M.: Phys. Rev. B 65(15), 155303 (2002)Google Scholar
  179. 179.
    Žutić, I., Fuhrer, M.: A path to spin logic. Nature Phys. 1(2), 85–86 (2005)Google Scholar
  180. 180.
    Zega, T.J., Hanbicki, A.T., Erwin, S.C., Žutić, I., Kioseoglou, G., Li, C.H., Jonker, B.T., Stroud, R.M.: Determination of interface atomic structure and its impact on spin transport using Z-contrast microscopy and density-functional theory. Phys. Rev. Lett. 96(19), 196101 (2006)Google Scholar
  181. 181.
    Popinciuc, M., Józsa, C., Zomer, P.J., Tombros, N., Veligura, A., Jonkman, H.T., van Wees, B.J.: Electronic spin transport in graphene field-effect transistors. Physical Review B 80(21), 214427 (2009)Google Scholar
  182. 182.
    Kuemmeth, F., Ilani, S., Ralph, D.C., McEuen, P.L.: Coupling of spin and orbital motion of electrons in carbon nanotubes. Nture 452(7186), 448–452 (2008)Google Scholar
  183. 183.
    Žutić, I., Fabian, J., Erwin, S.C.: Spin injection and detection in silicon. Physical Review Letters 97(2), 26602 (2006)Google Scholar
  184. 184.
    Appelbaum, I., Huang, B., Monsma, J.: Electronic measurement and control of spin transport in silicon. Nature 447(7142), 295–298 (2007)Google Scholar
  185. 185.
    Jonker, B.T., Kioseoglou, G., Hanbicki, A.T., Li, C.H., Thompson, P.E.: Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Physics 3(8), 542–546 (2007)Google Scholar
  186. 186.
    Flatté, M.E.: Silicon spintronics warms up. Nature 462(7272), 419–420 (2009)Google Scholar
  187. 187.
    Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462(7272), 491–494 (2009)Google Scholar
  188. 188.
    Marukame, T., Inokuchi, T., Ishikawa, M., Sugiyama, H., Saito, Y.: Read/write operation of spin-based MOSFET using highly spin-polarized ferromagnet/MgO tunnel barrier for reconfigurable logic devices. In: IEDM Tech. Dig., pp. 215–218 (2009)Google Scholar
  189. 189.
    Sugaharaa, S., Tanakab, M.: A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Applied Physics Letters 84(13), 2307–2309 (2004)Google Scholar
  190. 190.
    Tanaka, M.: Spintronics: recent progress and tomorrow’s challenges. Journal of Crystal Growth 278(1-4), 25–37 (2005)Google Scholar
  191. 191.
    Sugaharaa, S., Tanakab, M.: A spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) with a ferromagnetic semiconductor for the channel. Journal of Applied Physics 97(10), 10D503 (2005)Google Scholar
  192. 192.
    Sugaharaa, S., Tanakab, M.: Spin MOSFETs as a basis for spintronics. ACM Trans. Storage 2(2), 197–219 (2006)Google Scholar
  193. 193.
    Tanaka, M., Sugahara, S.: MOS-based spin devices for reconfigurable logic. IEEE Trans. Electron Devices 54(5), 961–976 (2007)Google Scholar
  194. 194.
    Low, T., Lundstrom, M.S., Nikonov, D.E.: Modeling of spin metal-oxide-semiconductor field-effect transistor: a nonequilibrium Green’s function approach with spin relaxation. Journal of Applied Physics 104(9), 094511 (2008)Google Scholar
  195. 195.
    Pelá, R.R., Teles, L.K.: Spin transistors vs. conventional transistors: what are the benefits? Journal of Superconductivity and Novel Magnetism 23(1), 61–64 (2010)Google Scholar
  196. 196.
    Bandyopadhyay, S., Cahay, M.: Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology 20(41), 412001 (2009)Google Scholar
  197. 197.
    Vyvoda, M.: 3-Dimensional Monolithic Nonvolatile Memories and the Future of Solid-State Data Storage, UC Berkeley (2008), http://microlab.berkeley.edu/text/seminars/slides/MonolithicMem.pdf
  198. 198.
    Grochowski, E., Halem, R.D.: Technological impact of magnetic hard disk drives on storage systems. IBM System Journal 42(2), 338–346 (2003)Google Scholar
  199. 199.
    Everitt, B.A., Pohm, A.V.: Pseudo spin-valve magnetoresistive random access memory. J. Vac. Sci. Technol. A 16(3), 1794–1800 (1998)Google Scholar
  200. 200.
    Zheng, Y., Zhu, J.-G.: Micromagnetic principles in pseudospin-valve memory element design. IEEE Trans. Magn. 33(5), 3286–3288 (1997)Google Scholar
  201. 201.
    Zhu, J.-G., Zheng, Y.: The Micromagnetics of magnetoresistive random access memory. In: Spin Dynamics in Confined Magnetic Structures I. Topics in Applied Physics, ch. 9, pp. 289–325. Springer, Berlin (2002)Google Scholar
  202. 202.
    Katti, R.R., Zou, D., Reed, D., Kaakani, H.: Spin-Valve and pseudo-spin-valve device switching for giant magnetoresistive random access memory applications. IEEE Trans. Magn. 39(5), 2848–2850 (2003)Google Scholar
  203. 203.
    Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995)Google Scholar
  204. 204.
    Moodera, J.S., Kinder, L.R.: Ferromagnetic-insulator-ferromagnetic tunneling: spin-dependent tunneling and large magnetoresistance in trilayer junctions. J. Appl. Phys. 79(8), 4724–4729 (1996)Google Scholar
  205. 205.
    Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in Fe/AlzO3/Fe junction. J. Magn. Magn. Mater. 139(3), L231–L234 (1995)Google Scholar
  206. 206.
    Gallagher, W.J., Parkin, S.S.P., Lu, Y., Bian, X.P., Marley, A., Roche, K.P., Altman, R.A., Rishton, S.A., Jahnes, C., Shaw, T.M., Xiao, G.: Microstructured magnetic tunnel junctions. J. Appl. Phys. 81(8), 3741–3746 (1997)Google Scholar
  207. 207.
    Daughton, J.M.: Magnetic tunneling applied to memory. J. Appl. Phys. 81(8), 3758–3763 (1997)Google Scholar
  208. 208.
    Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O’Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., Gallagher, W.J.: Exchange biased magnetic tunnel junctions and application to nonvolatile random access memory. J. Appl. Phys. 85(8), 5828–5833 (1999)Google Scholar
  209. 209.
    Tehrani, S., Chen, E., Durlam, M., DeHerrera, M., Slaughter, J.M., Shi, J., Kerszykowski, G.: High density submicron magnetoresistive random access memory. J. Appl. Phys. 85(8), 5822–5827 (1999)Google Scholar
  210. 210.
    Zhu, J.-G.: Magnetoresistive random access memory: the path to competitiveness and scalability. Proceedings of the IEEE 96(11), 1786–1798 (2008)Google Scholar
  211. 211.
    Tehrani, S., Slaughter, J.M., Deherrera, M., Engel, B.N., Rizzo, N.D., Salter, J., Durlam, M., Dave, R.W., Janesky, J., Butcher, B., Smith, K., Grynkewich, G.: Magnetoresistive random access memory using magnetic tunnel junctions. Proceedings of the IEEE 91(5), 703–714 (2003)Google Scholar
  212. 212.
    Sakimura, N., Sugibayashi, T., Honda, T., Honjo, H., Saito, S., Suzuki, T., Ishiwata, N., Tahara, S.: MRAM cell technology for over 500-MHz SoC. IEEE J. Solid-State Circuits 42(4) (2007)Google Scholar
  213. 213.
    Reohr, W., Honigschmid, H., Robertazzi, R., Gogl, D., Pesavento, F., Lammers, S., Lewis, K., Arndt, C., Yu, L., Viehmann, H., Scheuerlein, R., Li-Kong, W., Trouilloud, P., Parkin, S., Gallagher, W., Muller, G.: Memories of tomorrow. IEEE Circuits and Devices Magazine 18(5), 17–27 (2002)Google Scholar
  214. 214.
    Prinz, G.: Ultra high density, non-volatile ferromagnetic random access memory. U.S. Patent 5,477,482 (1995)Google Scholar
  215. 215.
    Zhu, J.-G., Zheng, Y., Prinz, G.A.: Ultrahigh density vertical magnetoresistive random access memory. J. Appl. Phys. 87(9), 6668–6673 (2000)Google Scholar
  216. 216.
    Durlam, M., Addie, D., Akerman, J., Butcher, B., Brown, P., Chan, J., DeHerrera, M., Engel, B.N., Feil, B., Grynkewich, G., Janesky, J., Johnson, M., Kyler, K., Molla, J., Martin, J., Nagel, K., Ren, J., Rizzo, N.D., Rodriguez, T., Savtchenko, L., Salter, J., Slaughter, J.M., Smith, K., Sun, J.J., Lien, M., Papworth, K., Shah, P., Qin, W., Williams, R., Wise, L., Tehrani, S.: A 0.18 μm 4 Mb toggling MRAM. In: IEDM Tech. Dig., pp. 995–996 (2003)Google Scholar
  217. 217.
    Engel, B.N., Åkerman, J., Butcher, B., Dave, R.W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S.V., Rizzo, N.D., Slaughter, J.M., Smith, K., Sun, J.J., Tehrani, S.: A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41(1), 132–136 (2005)Google Scholar
  218. 218.
    Andre, T.W., Nahas, J.J., Subramanian, C.K., Garni, B.J., Lin, H.S., Omair, A., Martino Jr., W.L.: A 4-Mb 0.18-μm 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers. IEEE J. Solid State Circuits 40(1), 301–309 (2005)Google Scholar
  219. 219.
    Savchenko, L., Engel, B.N., Rizzo, N.D., Herrera, M.F.D., Janesky, J.A.: Method of writing to scalable magnetoresistance random access memory element. U.S. Patent 6,545,906 (2003)Google Scholar
  220. 220.
    Zhu, J.-G., Zheng, Y.F.: Characteristics of AP bias in spin valve memory elements. IEEE Trans. Magn. 34(4), 1063–1065 (1998)Google Scholar
  221. 221.
    Zhu, J.-G.: Spin valve and dual spin valve heads with synthetic antiferromagnets. IEEE Trans. Magn. 35(2), 655–660 (1999)Google Scholar
  222. 222.
    Chen, E., Tehrani, S., Durlam, M., Zhu, T.: Magnetic memory and method therefore., U.S. Patent 5,659,499 (1997)Google Scholar
  223. 223.
    Sousa, R.C., Prejbeanu, I.L.: Non-volatile magnetic random access memories (MRAM). Comptes Rendus Physique 6(9), 1013–1021 (2005)Google Scholar
  224. 224.
    Prejbeanu, I.L., Kerekes, M., Sousa, R.C., Sibuet, H., Redon, O., Dieny, B., Nozières, J.P.: Thermally assisted MRAM. J. Physics: Condensed Matter 19(16), 165218 (2007)Google Scholar
  225. 225.
    Waite, R.I., Pohm, A.V., Comstock, C.S.: Thermal noise limitations to 2×20 μm2 magnetoresistive memory element thresholds. J. Appl. Phys. 63(8), 3151–3152 (1988)Google Scholar
  226. 226.
    Daughton, J.M., Pohm, A.V.: Design of Curie point written magnetoresistance random access memory cells. J. Appl. Phys. 93(10), 7304–7306 (2003)Google Scholar
  227. 227.
    Wang, J., Freitas, P.P.: Low-current blocking temperature writing of double barrier magnetic random access memory cells. Appl. Phys. Lett. 84(6), 945–947 (2004)Google Scholar
  228. 228.
    Prejbeanu, I.L., Kula, W., Ounadjela, K., Sousa, R.C., Redon, O., Dieny, B., Nozières, J.-P.: Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn. 40(4), 2625–2627 (2004)Google Scholar
  229. 229.
    Huai, Y., Albert, F., Nguyen, P., Pakala, M., Valet, T.: Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Applied Physics Letters 84(16), 3118–3120 (2004)Google Scholar
  230. 230.
    Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H.: A novel nonvolatile memory with spin torque transfer magnetization switching: spin-RAM. In: IEDM Tech. Dig., pp. 459–462 (2005)Google Scholar
  231. 231.
    Diao, Z., Apalkov, D., Pakala, M., Ding, Y., Panchula, A., Huai, Y.: Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers. Appl. Phys. Lett. 87(23), 232502 (2005)Google Scholar
  232. 232.
    Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 9353–9358 (1996)Google Scholar
  233. 233.
    Sun, J.Z.: Current-drive magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202(1), 157–162 (1999)Google Scholar
  234. 234.
    Katine, J.A., Albert, J.F., Buhrman, R.A., Meyers, E.B., Ralph, D.C.: Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84(14), 3149–3152 (2000)Google Scholar
  235. 235.
    Li, Z., Zhang, S.: Thermally assisted magnetization reversal in the presence of a spin-transfer torque. Physical Review B 69(13), 134416 (2004)Google Scholar
  236. 236.
    Koch, R.H., Katine, J.A., Sun, J.Z.: Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys. Rev. Lett. 92(8), 88302 (2004)Google Scholar
  237. 237.
    Higo, Y., Yamane, K., Ohba, K., Narisawa, H., Bessho, K., Hosomi, M., Kano, H.: Thermal activation effect on spin transfer switching in magnetic tunnel junctions. Appl. Phys. Lett. 87(8), 82502 (2005)Google Scholar
  238. 238.
    Diao, Z., Li, Z., Wang, S., Ding, Y., Panchula, A., Chen, E., Wang, L.-C., Huai, Y.: Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Physics: Condensed Matter 19(16), 165209 (2007)Google Scholar
  239. 239.
    Huai, Y.: Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18(6), 33–40 (2008)Google Scholar
  240. 240.
    Sun, J.Z.: Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62(1), 570–578 (2000)Google Scholar
  241. 241.
    Diao, Z., Pakala, M., Panchula, A., Ding, Y., Apalkov, D., Wang, L.-C., Chen, E., Huai, Y.: Spin-transfer switching in MgO-based magnetic tunnel junctions. J. Appl. Phys. 99(8), 08G510 (2006)Google Scholar
  242. 242.
    Huai, Y., Pakala, M., Diao, Z., Apalkov, D., Ding, Y., Panchula, A.: Spin-transfer switching in MgO magnetic tunnel junction nanostructures. J. Mag. Mag. Mat. 304(1), 88–92 (2006)Google Scholar
  243. 243.
    Grollier, J., Gros, V., Hamzic, A., George, J.M., Jaffes, H., Fert, A., Faini, G., Ben Youssef, J., Le Gall, H.: Spin-polarized current induced switching in Co/Cu/Co pillars. Appl. Phys. Lett. 78(23), 3663–3665 (2001)Google Scholar
  244. 244.
    Sun, J.Z., Monsma, D.J., Abraham, D.W., Rooks, M.J., Koch, R.H.: Batch-fabricated spin-injection magnetic switches. Appl. Phys. Lett. 81(12), 2202–2204 (2002)Google Scholar
  245. 245.
    Urazhdin, S., Kurt, H., Pratt, W.P., Bass, J.: Effect of antiferromagnetic interlayer coupling on current-assisted magnetization switching. Appl. Phys. Lett. 83(1), 114–116 (2003)Google Scholar
  246. 246.
    Puffall, M.R., Rippard, W.H., Silva, T.J.: Materials dependence of the spin-momentum transfer efficiency and critical current in ferromagnetic metal/Cu multilayers. Appl. Phys. Lett. 83(2), 323–325 (2003)Google Scholar
  247. 247.
    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004)Google Scholar
  248. 248.
    Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K.: 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86(9), 92502 (2005)Google Scholar
  249. 249.
    Ikeda, S., Hayakawa, J., Min Lee, Y., Matsukura, F., Ohno, Y., Hanyu, T., Ohno, H.: Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron Devices 54(5), 991–1002 (2007)Google Scholar
  250. 250.
    Huai, Y., Pakala, M., Diao, Z., Ding, Y.: Spin transfer switching current reduction in magnetic tunnel junction based dual spin filter structures. Applied Physics Letters 87(22), 222510 (2005)Google Scholar
  251. 251.
    Diao, Z., Panchula, A., Ding, Y., Pakala, M., Wang, S., Li, Z., Apalkov, D., Nagai, H., Driskill-Smith, A., Wang, L.-C., Chen, E., Huai, Y.: Spin transfer switching in dual MgO magnetic tunnel junctions. Applied Physics Letters 90(13), 132508 (2007)Google Scholar
  252. 252.
    Feng, G., van Dijken, S., Coey, J.M.D.: MgO-based double barrier magnetic tunnel junctions with thin free layers. Applied Physics Letters 105(7), 07C926 (2009)Google Scholar
  253. 253.
    Slonczewski, J.C.: Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B. 71(2), 24411 (2005)Google Scholar
  254. 254.
    Huai, Y., Pakala, M., Diao, Z., Apalkov, D., Ding, Y., Panchula, A.: Spin-transfer switching in MgO magnetic tunnel junction nanostructures. J. Magn. Magn. Mater. 304(1), 88–92 (2006)Google Scholar
  255. 255.
    Zhuand, X., Kang, S.H.: Distinction and correlation between magnetization switchings driven by spin transfer torque and applied magnetic field. J. Applied Physics 105(7), 07D125 (2009)Google Scholar
  256. 256.
    Zhu, X., Kang, S.H.: Inherent spin transfer torque driven switching current fluctuations in magnetic element with in-plane magnetization and comparison to perpendicular design. J. Applied Physics 106(11), 113906 (2009)Google Scholar
  257. 257.
    Lee, K.J., Redon, O., Dieny, B.: Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer. Appl. Phys. Lett. 86(2), 22505 (2005)Google Scholar
  258. 258.
    Zhu, X., Zhu, J.-G.: Spin torque and field-driven perpendicular MRAM designs scalable to multi-Gb/chip capacity. IEEE Trans. Magn. 42(10), 2739–2741 (2006)Google Scholar
  259. 259.
    Seki, T., Mitani, S., Yakushiji, K., Takanashi, K.: Spin-polarized current-induced magnetization reversal in perpendicularly magnetized L10-FePt layers. Applied Physics Letters 88(17), 172504 (2006)Google Scholar
  260. 260.
    Meng, H., Wang, J.-P.: Spin transfer in nanomagnetic devices with perpendicular anisotropy. Applied Physics Letters 88(17), 172506 (2006)Google Scholar
  261. 261.
    Klostermann, U.K., Angerbauer, M., Grüning, U., Kreupl, F., Rührig, M., Dahmani, F., Kund, M., Müller, G.: A perpendicular spin torque switching based MRAM for the 28 nm technology node. In: IEDM Tech. Dig., pp. 187–190 (2007)Google Scholar
  262. 262.
    Kishi, T., Yoda, H., Kai, T., Nagase, T., Kitagawa, E., Yoshikawa, M., Nishiyama, K., Daibou, T., Nagamine, M., Amano, M., Takahashi, S., Nakayama, M., Shimomura, N., Aikawa, H., Ikegawa, S., Yuasa, S., Yakushiji, K., Kubota, H., Fukushima, A., Oogane, M., Miyazaki, T., Ando, K.: Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. In: IEDM Tech. Dig., pp. 1–4 (2008)Google Scholar
  263. 263.
    Ochiai, T., Jiang, Y., Hirohata, A., Tezuka, N., Sugimoto, S., Inomata, K.: Distinctive current-induced magnetization switching in a current-perpendicular-to-plane giant-magnetoresistance nanopillar with a synthetic antiferromagnet free layer. Applied Physics Letters 86(22), 242506 (2005)Google Scholar
  264. 264.
    Hayakawa, J., Ikeda, S., Lee, Y.M., Sasaki, R., Meguro, T., Matsukura, F., Takahashi, H., Ohno, H.: Current-induced magnetization switching in MgO barrier based magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic ferrimagnetic free layer. Japanese Journal of Applied Physics 45(40), L1057–L1060 (2006)Google Scholar
  265. 265.
    Ichimura, M., Hamada, T., Imamura, H., Takahashi, S., Maekawa, S.: Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers. J. Appl. Phys. 105(7), 07D120 (2009)Google Scholar
  266. 266.
    Yen, C.-T., Chen, W.-C., Wang, D.-Y., Lee, Y.-J., Shen, C.-T., Yang, S.-Y., Tsai, C.-H., Hung, C.-C., Shen, K.-H., Tsai, M.-J., Kao, M.-J.: Reduction in critical current density for spin torque transfer switching with composite free layer. Applied Physics Letters 93(9), 92504 (2008)Google Scholar
  267. 267.
    You, C.-Y.: Critical current density for spin transfer torque switching with composite free layer structure. Current Applied Physics 10(3), 952–956 (2010)Google Scholar
  268. 268.
    Moneck, M.T., Zhu, J.-G.: Spin transfer torque in deep submicron annular CPP-GMR devices. IEEE Trans. Magnetics 44(11), 2500–2503 (2008)Google Scholar
  269. 269.
    Zhu, X., Zhu, J.-G.: A vertical MRAM free of write disturbance. IEEE Trans. Magn. 39(5), 2854 (2003)Google Scholar
  270. 270.
    Zhu, X.: Spin Torque Driven Nano-Spintronics Devices, Ph.D. dissertation, Dept. of Electrical and Computer Engineering, Carnegie-Mellon University, Pittsburgh, PA, USA (2007)Google Scholar
  271. 271.
    Kent, A.D., Stein, D.L.: Annular spin-transfer memory element. To be appeared in IEEE Trans. NanotechnologyGoogle Scholar
  272. 272.
    Parkin, S.S.P.: Shiftable magnetic shift register and method of using the same. U.S. Patent 6,834,005 (2004)Google Scholar
  273. 273.
    Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)Google Scholar
  274. 274.
    Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P.: Current-controlled magnetic domain-wall nanowire shift register. Science 320(5873), 209–211 (2008)Google Scholar
  275. 275.
    Zabel, H.: Progress in spintronics. Superlattices and Microstructures 46(4), 541–553 (2009)Google Scholar
  276. 276.
    Parkin, S.S.P.: Data in the fast lanes of racetrack memory. Scientific American 300(6), 76–81 (2009)Google Scholar
  277. 277.
    Numata, H., Suzuki, T., Ohshima, N., Fukami, S., Nagahara, K., Ishiwata, N., Kasai, N.: Scalable cell technology utilizing domain wall motion for high-speed MRAM. In: Symp. VLSI Technology Tech. Dig., pp. 232–233 (2007)Google Scholar
  278. 278.
    Ohshima, N., Numata, H., Suzuki, T., Fukami, S., Nagahara, K., Ishiwata, N.: Reduction of critical current density for domain wall motion in U-shaped magnetic patterns. J. Applied Physics 103(7), 07D914 (2008)Google Scholar
  279. 279.
    Fukami, S., Suzuki, T., Ohshima, N., Nagahara, K., Ishiwata, N.: Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J. Applied Physics 103(7), 07E718(2008)Google Scholar
  280. 280.
    Suzuki, T., Fukami, S., Ohshima, N., Nagahara, K., Ishiwata, N.: Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy. J. Applied Physics 103(11), 113913 (2008)Google Scholar
  281. 281.
    Fukami, S., Suzuki, T., Nagahara, K., Ohshima, N., Ozaki, Y., Saito, S., Nebashi, R., Sakimura, N., Honjo, H., Mori, K., Igarashi, C., Miura, S., Ishiwata, N., Sugibayashi, T.: Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. In: Symp. VLSI Technology Tech. Dig., pp. 230–231 (2009)Google Scholar
  282. 282.
    Eaton, S.S., Butler, D.B., Parris, M., Wilson, D., McNeillie, H.: A ferroelectric nonvolatile memory. In: IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 130–131 (1988)Google Scholar
  283. 283.
    Arimoto, Y., Ishiwara, H.: Current status of ferroelectric random-access memory. Materials Reaserch Society Bulletin 29(11), 823–828 (2004)Google Scholar
  284. 284.
    Prince, B.: Trends in scaled and nanotechnology memories. In: Non-Volatile Memory Technology Symp., pp. 55–61 (2005)Google Scholar
  285. 285.
    Kohlstedt, H., Mustafa, Y., Gerber, A., Petraru, A., Fitsilis, M., Meyer, R., Böttger, U., Waser, R.: Current status and challenges of ferroelectric memory devices. Microelectronic Engineering 80(1), 296–304 (2005)Google Scholar
  286. 286.
    Kato, Y., Kaneko, Y., Tanaka, H., Kaibara, K., Koyama, S., Isogai, K., Yamada, T., Shimada, Y.: Overview and future challenge of ferroelectric random access memory technologies. Japanese Journal of Applied Physics 46(4B), 2157–2163 (2007)Google Scholar
  287. 287.
    Scott, J.F.: Applications of modern ferroelectrics. Science 315(5814), 954–959 (2007)Google Scholar
  288. 288.
    Liao, L., Fan, H.J., Yan, B., Zhang, Z., Chen, L.L., Li, B.S., Xing, G.Z., Shen, Z.X., Wu, T., Sun, X.W., Wang, J., Yu, T.: Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. ACS Nano 3(3), 700–706 (2009)Google Scholar
  289. 289.
    Ishiwara, H.: Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Current Applied Physics 9(1), S2–S6 (2009)Google Scholar
  290. 290.
    Le, S.H., Salmassi, B.R., Burghartz, J.N., Sarro, P.M.: Characterization of ferroelectric thin films materials for FeRAM. In: Proc. SAFE and ProRISC, pp. 710–713 (2004)Google Scholar
  291. 291.
    Smolenskii, G.A., Bokov, V.A., Isupov, V.A., Krainik, N.N., Pasynkov, R.E., Sokolov, A.I.: Ferroelectrics and Related Materials. Gordon and Breach, New York (1984)Google Scholar
  292. 292.
    Rickes, J.T.: Advanced Circuit Design of Gigabit-Density Ferroelectric Random-Access Memories. PhD Dissertation, Faculty of Electrical Enginnering and Information Technology, RWTH Aachen (2002)Google Scholar
  293. 293.
    Pirovano, A.: Emerging Non-Volatile Memories. IEDM Short Course (2006)Google Scholar
  294. 294.
    Wua, D., Lia, A., Ming, N.: Characteristics of metal-ferroelectric-insulator-semiconductor structure using La-modified Bi4Ti3O12 as the ferroelectric layer. Microelectronic Engineering 66(1-4), 773–778 (2003)Google Scholar
  295. 295.
    Metz, W.J., Anderson, J.R.: Ferroelectric storage devices. Bell Laboratories Record 33(9), 335–337, 339–342 (1955)Google Scholar
  296. 296.
    Anderson, J.R.: Electrical circuits employing ferroelectric capacitors. U.S. Patent 2,876,436 (1959)Google Scholar
  297. 297.
    DeVilbiss, A.D., Derbenwick, G.F.: Ferroelectric memories. In: Brewer, J.E., Gill, M. (eds.) Nonvoletile Memory Technologies with Emphasis on Flash, ch. 13, pp. 654–678. John Wiley & Sons (IEEE Press), New Jersey, USA (2007)Google Scholar
  298. 298.
    Krieger, J.H.: Physical concepts of memory device operation based on piezoacousto and pyroelectric properties of ferroelectric films. J. Applied Physics 105(6), 61629 (2009)Google Scholar
  299. 299.
    Jaa, H.J., Song, Y.J., Kim, H.H., Kang, S.K., Park, I.H., Kang, Y.M., Kang, E.Y., Lee, S.Y., Jeong, H.S., Kim, K.: Highly reliable and mass-productive FRAM embedded smartcard using advanced integration technologies. In: Symp. VLSI Technology Tech. Dig., pp. 148–149 (2004)Google Scholar
  300. 300.
    Takashima, D., Kunishima, I.: High-density chain ferroelectric random access memory (chain FRAM). IEEE J. Solid-State Circuits 33(5), 787–792 (1998)Google Scholar
  301. 301.
    Sinharoy, S., Buhay, H., Lampe, D.R., Francombe, M.H.: Integration of ferroelectric thin films into nonvolatile memories. J. Vac. Sci. Technol. A 10(4), 1554–1561 (1992)Google Scholar
  302. 302.
    Miller, S.L., McWhorter, P.J.: Physics of the ferroelectric nonvolatile memory field effect transistor. J. Applied Physics 72(12), 5999–6010 (1992)Google Scholar
  303. 303.
    Mathews, S., Ramesh, R., Venkatesan, T., Benedetto, J.: Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276(5310), 238–240 (1997)Google Scholar
  304. 304.
    Tokumitsu, E., Fujii, G., Ishiwara, H.: Nonvolatile ferroelectric-gate field-effect transistors using SrBiTaO-Pt-SrTaO-SiON-Si structures. Appl. Phys. Lett. 75(4), 575–577 (1999)Google Scholar
  305. 305.
    Ishiwara, H.: Current status and prospects of FET-type ferroelectric memories. J. Semiconductor Technology and Science 1(1), 1–14 (2001)Google Scholar
  306. 306.
    Khoa, T.D., Horita, S.: Retention and read endurance characteristics of a ferroelectric gate field-effect transistor memory with an intermediate electrode. Jpn. J. Appl. Phys. 43(4B), 2220–2225 (2004)Google Scholar
  307. 307.
    Takahashi, M., Sakai, S.: Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effect transistors with long memory retention. Jpn. J. Appl. Phys. 44(25), L800–L802 (2005)Google Scholar
  308. 308.
    Juan, T.P.-C., Chang, C.-Y., Lee, J.Y.-M.: A new metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (Dy2O3)-semiconductor (MFIS) FET for nonvolatile memory applications. Electron Device Letters 27(4), 217–220 (2006)Google Scholar
  309. 309.
    Sakai, S., Takahashi, M., Takeuchi, K., Li, Q.-H., Horiuchi, T., Wang, S., Yun, K.-Y., Takamiya, M., Sakurai, T.: Highly scalable Fe(ferroelectric)-NAND cell with MFIS(metal-ferroelectric-insulator-semiconductor) structure for sub-10nm tera-bit capacity NAND flash memories. In: Proceedings of Joint NVSMW and ICMTD, pp. 103–105 (2008)Google Scholar
  310. 310.
    Li, T., Hsu, S.T., Ulrich, B., Stecker, L., Evans, D.: One transistor ferroelectric memory devices with improved retention characteristics. Jpn. J. Appl. Phys. 41(11B), 6890–6894 (2002)Google Scholar
  311. 311.
    Sakai, S., Ilangovan, R.: Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Letters 25(6), 369–371 (2004)Google Scholar
  312. 312.
    Han, J.-P., Ma, T.P.: SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer. Applied Physics Letters 72(10), 1185–1186 (1998)Google Scholar
  313. 313.
    Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., Streiffer, S.: Ferroelectric thin films: review of materials, properties, and applications. J. Applied Physics 100(5), 51606 (2006)Google Scholar
  314. 314.
    Ma, T.P., Han, J.-P.: Why is nonvolatile ferroelectric memory fieldeffect transistor still elusive? IEEE Electron Device Letters 23(7), 386–388 (2002)MathSciNetGoogle Scholar
  315. 315.
    Tokumitsu, E., Nakamura, R.I., Ishiwara, H.: Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures. IEEE Electron Device Lett. 18(4), 160–162 (1997)Google Scholar
  316. 316.
    Tokumitsu, E., Fujii, G., Ishiwara, H.: Electrical properties of metal-ferroelectric-insulator-semiconductor (MFIS)-and metal-ferroelectric-metal-insulator-semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer. Jpn. J. Appl. Phys. 39(4B), 2125–2130 (2000)Google Scholar
  317. 317.
    Kim, K.-H., Han, J.-P., Jung, S.-W., Ma, T.-P.: Ferroelectric DRAM (FEDRAM) FET with metal/SrBi2Ta2O9/SiN/Si gate structure. IEEE Electron Device Letters 23(2), 82–84 (2002)Google Scholar
  318. 318.
    Yu, B.-G., You, I.-K., Lee, W.-J., Ryu, S.-O., Kim, K.-D., Yoon, S.-M., Cho, S.-M., Lee, N.-Y., Shin, W.-C.: Device characterization and fabrication issues for ferroelectric gate field effect transistor device. J. Semicond. Technol. Sci. 2(3), 213–225 (2002)Google Scholar
  319. 319.
    Park, B.-E., Ishiwara, H.: Fabrication and characterization of (Bi, La)4Ti3O12 films using LaAlO3 buffer layers for MFIS structures. Integrated Ferroelectrics 62(1), 141–147 (2004)Google Scholar
  320. 320.
    Aizawa, K., Park, B.-E., Kawashima, Y., Takahashi, K., Ishiwara, H.: Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl. Phys. Lett. 85(15), 3199–3201 (2004)Google Scholar
  321. 321.
    Fujimori, Y., Nakamura, T., Kamisawa, A.: Properties of ferroelectric memory FET using Sr2(Ta, Nb)2O7 thin film. Jpn. J. Appl. Phys. 38(4B), 2285–2288 (1999)Google Scholar
  322. 322.
    Li, T., Hsu, S.T., Ulrich, B.D., Stecker, L., Evans, D.R., Lee, J.J.: One transistor ferroelectric memory with Pt/Pb5Ge3O11/Ir/Poly-Si/SiO2/Si gate stack. IEEE Electr. Dev. Lett. 23, 339–341 (2002)Google Scholar
  323. 323.
    Fu, W., Xu, Z., Bai, X., Gu, C., Wang, E.: Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Letters 9(3), 921–925 (2009)Google Scholar
  324. 324.
    Jung, D.J., Ahn, W.S., Hong, Y.K., Kim, H.H., Kang, Y.M., Kang, J.Y., Lee, E.S., Ko, H.K., Kim, S.Y., Jung, W.W., Kim, J.H., Kang, S.K., Jung, J.Y., Kim, H.S., Choi, D.Y., Lee, S.Y., Wei, C., Jeong, H.S.: An endurance-free ferroelectric random access memory as a non-volatile RAM. In: Symp. VLSI Technology Tech. Dig., pp. 102–103 (2008)Google Scholar
  325. 325.
    Shiga, H., Takashima, D., Shiratake, S.-I., Hoya, K., Miyakawa, T., Ogiwara, R., Fukuda, R., Takizawa, R., Hatsuda, K., Matsuoka, F., Nagadomi, Y., Hashimoto, D., Nishimura, H., Hioka, T., Doumae, S., Shimizu, S., Kawano, M., Taguchi, T., Watanabe, Y., Fujii, S., Ozaki, T., Kanaya, H., Kumura, Y., Shimojo, Y., Yamada, Y., Minami, Y., Shuto, S., Yamakawa, K., Yamazaki, S., Kunishima, I., Hamamoto, T., Nitayama, A., Furuyama, T.: A 1.6 GB/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes. IEEE J. Solid-State Circuits 45(1), 142–152 (2010)Google Scholar
  326. 326.
    Hatanaka, T., Yajima, R., Horiuchi, T., Wang, S., Zhang, X., Takahashi, M., Sakai, S., Takeuchi, K.: Ferroelectric(Fe)-NAND flash memory with non-volatile page buffer for data center application enterprise solid-state drives (SSD). In: Symp. VLSI Technology Tech. Dig., pp. 78–79 (2009)Google Scholar
  327. 327.
    Pertsev, N.A., Kohlstedt, H.: Magnetic tunnel junction on a ferroelectric. Applied Physics Letters 95(16), 163503 (2009)Google Scholar
  328. 328.
    Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450–1455 (1968)Google Scholar
  329. 329.
    Oh, J.H., Park, J.H., Lim, Y.S., Lim, H.S., Oh, Y.T., Kim, J.S., Shin, J.M., Park, J.H., Song, Y.J., Ryoo, K.C., Lim, D.W., Park, S.S., Kim, J.I., Kim, J.H., Yu, J., Yeung, F., Jeong, C.W., Kong, J.H., Kang, D.H., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K.: Full integration of highly manufacturable 512Mb PRAM based on 90nm technology. In: IEEE IEDM Tech. Dig., pp. 1–4 (2006)Google Scholar
  330. 330.
    Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69(5), 2849–2856 (1991)Google Scholar
  331. 331.
    Tominaga, J., Kikukawa, T., Takahashi, M., Phillips, R.T.: Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction. J. Appl. Phys. 82(7), 3214–3218 (1997)Google Scholar
  332. 332.
    Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3(3), 703707 (2004)Google Scholar
  333. 333.
    Hudgens, S., Johnson, B.: Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull. 29(11), 829–832 (2004)Google Scholar
  334. 334.
    Wang, F., Wu, X.: Non-volatile memory devices based on chalcogenide materials. In: Sixth International Conference on Information Technology: New Generations, pp. 5–9 (2009)Google Scholar
  335. 335.
    Adler, D., Henisch, H.K., Mott, N.: The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50(2), 209–220 (1978)Google Scholar
  336. 336.
    Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electr. Devices 51(3), 452–459 (2004)Google Scholar
  337. 337.
    Redaelli, A., Pirovano, A., Pellizzer, F., Lacaita, A.L., Ielmini, D., Bez, R.: Electronic switching effect and phase-change transition in chalcogenide materials. IEEE Electron Device Lett. 25(10), 684–686 (2004)Google Scholar
  338. 338.
    Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.-C., Shelby, R.M., Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-L., Lam, C.H.: Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52(4-5), 465–479 (2008)Google Scholar
  339. 339.
    Ielmini, D., Lacaita, A.L., Mantegazza, D.: Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Devices 54(2), 308–315 (2007)Google Scholar
  340. 340.
    Pirovano, A., Lacaita, A.L., Pellizzer, F., Kostylev, S.A., Benvenuti, A., Bez, R.: Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51(5), 714–719 (2004)Google Scholar
  341. 341.
    Lacaita, A.L., Ielmini, D., Mantegazza, D.: Status and challenges of phase change memory modeling. Solid-State Electronics 52(9), 1443–1451 (2008)Google Scholar
  342. 342.
    Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., Shenoy, R.S.: Phase change memory technology. J. Vac. Sci. Technol. B 28(2), 223–262 (2010)Google Scholar
  343. 343.
    Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga, M., Risk, W.P., Happ, T.D., McClelland, G.M., Breitwisch, M., Schrott, A., Philipp, J.B., Lee, M.H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C.F., Joseph, E., Zaidi, S., Yee, B., Lung, H.L., Bergmann, R., Lam, C.: Ultra-thin phase-change bridge memory device using GeSb. In: IEEE IEDM Tech. Dig., pp. 777–780 (2006)Google Scholar
  344. 344.
    Pellizzer, F., Pirovano, A., Ottogalli, F., Magistretti, M., Scaravaggi, M., Zuliani, P., Tosi, M., Benvenuti, A., Besana, P., Cadeo, S., Marangon, T., Morandi, R., Piva, R., Spandre, A., Zonca, R., Modelli, A., Varesi, E., Lowrey, T., Lacaita’, A., Casagrande, G., Cappelletti, P., Bez, R.: Novel μtrench phase-change memory cell for embedded and stand-alone non-volatile memory applications. In: Symp. on VLSI Tech., pp. 18–19 (2004)Google Scholar
  345. 345.
    Sasago, Y., Kinoshita, M., Morikawa, T., Kurotsuchi, K., Hanzawa, S., Mine, T., Shima, A., Fujisaki, Y., Kume, H., Moriya, H., Takaura, N., Torii, K.: Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode. In: IEEE IEDM Tech. Dig., pp. 24–24 (2009)Google Scholar
  346. 346.
    Lung, H.-L., Breitwisch, M., Happ, T., Lam, C.: Phase-change memory-present and future. In: Proceedings of the Second International Conference on Memory Technology and Design, pp. 35–38 (2007)Google Scholar
  347. 347.
    Russo, U., Ielmini, D., Lacaita, A.L.: Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation. IEEE Trans. Electron Devices 54(10), 2769–2777 (2007)Google Scholar
  348. 348.
    Russo, U., Ielmini, D., Redaelli, A., Lacaita, A.L.: Intrinsic data retention in nanoscaled phase-change memories-part I: monte carlo model for crystallization and percolation. IEEE Trans. Electron Devices 53(12), 3032–3039 (2006)Google Scholar
  349. 349.
    Lai, S., Lowrey, T.: OUM - a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. In: IEEE IEDM Tech. Dig., pp. 803–806 (2001)Google Scholar
  350. 350.
    Mantegazza, D., Ielmini, D., Pirovano, A., Gleixner, B., Lacaita, A.L., Varesi, E., Pellizzer, F., Bez, R.: Electrical characterization of anomalous cells in phase change memory arrays. In: IEEE IEDM Tech. Dig., pp. 1–4 (2006)Google Scholar
  351. 351.
    Lai, S.: Current status of the phase change memory and its future. In: IEEE IEDM Tech. Dig., pp. 255–258 (2003)Google Scholar
  352. 352.
    Goux, L., Castro, D.T., Hurkx, G.A.M., Lisoni, J.G., Delhougne, R., Gravesteijn, D.J., Attenborough, K., Wouters, D.J.: Transient characteristics of the reset programming of a phase-change line cell and the effect of the reset parameters on the obtained state. IEEE Trans. Electron Devices 56(7), 1499–1506 (2009)Google Scholar
  353. 353.
    Hudgens, S.J.: The future of phase-change semiconductor memory devices. Journal of Non-Crystalline Solids 354(19-25), 2748–2752 (2008)Google Scholar
  354. 354.
    Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R.: Scaling analysis of phase-change memory technology. In: IEEE IEDM Tech. Dig., pp. 699–702 (2003)Google Scholar
  355. 355.
    Nirschl, T., Philipp, J.B., Happ, T.D., Burrt, G.W., Rajendrant, B., Lee, M.-H., Schrott, A., Yang, M., Breitwisch, M., Chen, C.-F., Joseph, E., Lamorey, M., Chee, R., Chen, S.-H., Zaidi, S., Raoux, S., Chen, Y.C., Zhu, Y., Bergmann, R., Lunge, H.-L., Lam, C.: Write strategies for 2 and 4-bit multi-level phase-change memory. In: IEEE IEDM Tech. Dig., pp. 461–464 (2007)Google Scholar
  356. 356.
    Kang, D.-H., Lee, J.-H., Kong, J.H., Ha, D., Yu, J., Um, C.Y., Park, J.H., Yeung, F., Kim, J.H., Park, W.I., Jeon, Y.J., Lee, M.K., Park, J.H., Song, Y.J., Oh, J.H., Jeong, G.T., Jeong, H.S.: Two-bit cell operation in diode-switch phase change memory cells with 90nm technology. In: Symp. VLSI Technology Tech. Dig., pp. 89–99 (2008)Google Scholar
  357. 357.
    Bedeschi, F., Fackenthal, R., Resta, C., Donzè, E.M., Jagasivamani, M., Buda, E.C., Pellizzer, F., Chow, D.W., Cabrini, A., Calvi, G.M.A., Faravelli, R., Fantini, A., Torelli, G., Mills, D., Gastaldi, R., Casagrande, G.: A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J. Solid-State Circuits 44(1), 217–227 (2009)Google Scholar
  358. 358.
    Yeo, E.G., Shi, L.P., Zhao, R., Lim, K.G., Chong, T.C., Adesida, I.: Parasitic capacitance effect on programming performance of phase change random access memory devices. Applied Physics Letters 96(4), 43506 (2010)Google Scholar
  359. 359.
    Pagnia, H., Sotnik, S.: Bistable switching in electroformed metal-insulator-metal devices. Physica Status Solidi (a) 108(1), 11–65 (1988)Google Scholar
  360. 360.
    Chudnovskii, F.A., Odynets, L.L., Pergament, A.L., Stefanovich, G.B.: Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism. J. Solid State Chemistry 122(1), 95–99 (1996)Google Scholar
  361. 361.
    Asamitsu, A., Tomioka, Y., Kuwahara, H., Tokura, Y.: Current switching of resistive states in magnetoresistive manganites. Nature 388(6637), 50–52 (1997)Google Scholar
  362. 362.
    Liu, S.Q., Wu, N.J., Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76(19), 2749–2751 (2000)Google Scholar
  363. 363.
    Beck, A., Bednorz, J.G., Gerber, C., Rossel, C., Widmer, D.: Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77(1), 139–141 (2000)Google Scholar
  364. 364.
    Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.-I., Moon, J.T.: Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: IEEE IEDM Tech. Dig., pp. 587–590 (2004)Google Scholar
  365. 365.
    Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.-S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Kim, J.-S., Choi, J.S., Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85(23), 5655–5657 (2004)Google Scholar
  366. 366.
    Kozicki, M.N., Gopalan, C., Balakrishnan, M., Park, M., Mitkova, M.: Non-volatile memory based on solid electrolytes. In: Proc. Non-Volatile Memory Technology Symp (NVMTS), pp. 10–17 (2004)Google Scholar
  367. 367.
    Ouyang, J.Y., Chu, C.W., Szmanda, C.R., Ma, L.P., Yang, Y.: Programmable polymer thin film and non-volatile memory device. Nature Mater 3(12), 918–922 (2004)Google Scholar
  368. 368.
    Guan, W., Long, S., Liu, M., Li, Z., Hu, Y., Liu, Q.: Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D 40(9), 2754–2758 (2007)Google Scholar
  369. 369.
    Kim, S.-W., Nishi, Y.: Copper sulfide-based resistance change memory. In: Proc. Non-Volatile Memory Technology Symp. (NVMTS), pp. 76–78 (2007)Google Scholar
  370. 370.
    Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)Google Scholar
  371. 371.
    Karg, S.F., Meijer, G.I., Bednorz, J.G., Rettner, C.T., Schrott, A.G., Joseph, E.A., Lam, C.H., Janousch, M., Staub, U., La Mattina, F., Alvarado, S.F., Widmer, D., Stutz, R., Drechsler, U., Caimi, D.: Transition-metaloxide-based resistancechange memories. IBM J. Res. & Dev. 52(4-5), 481–491 (2008)Google Scholar
  372. 372.
    Nishi, Y., Jameson, J.R.: Recent progress in resistance change memory. In: 66th Device Reaserch Conf. Dig., pp. 271–274 (2008)Google Scholar
  373. 373.
    Lin, C.-Y., Liu, C.-Y., Lin, C.-C., Tseng, T.Y.: Current status of resistive nonvolatile memories. J. Electroceramics 21(1-4), 61–66 (2008)Google Scholar
  374. 374.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 186–192 (2009)Google Scholar
  375. 375.
    Ielmini, D., Nardi, F., Cagli, C., Lacaita, A.L.: Size-dependent retention time in NiO-based resistive-switching memories. IEEE Electron Device Letters 31(4), 353–355 (2010)Google Scholar
  376. 376.
    Esaki, L., Laibowitz, R.B., Stiles, P.J.: Polar switch. IBM Technical Disclosure Bulletin 13(8), 2161 (1971)Google Scholar
  377. 377.
    Kund, M., Beitel, G., Pinnow, C.-U., Röhr, T., Schumann, J., Symanczyk, R., Ufert, K.-D., Müller, G.: Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. In: IEEE IEDM Tech. Dig., pp. 754–757 (2005)Google Scholar
  378. 378.
    Dietrich, S., Angerbauer, M., Ivanov, M., Gogl, D., Hoenigschmid, H., Kund, M., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S., Mueller, G.: A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J. Solid-State Circuits 42(4), 839–845 (2007)Google Scholar
  379. 379.
    Chen, A.: Ionic memories: status and challenges. In: Proc. Non-Volatile Memory Technology Symp. (NVMTS), pp. 1–5 (2008)Google Scholar
  380. 380.
    Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M.: A nonvolatile programable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40(1), 168–176 (2005)Google Scholar
  381. 381.
    Kozicki, M.N., Balakrishnan, M., Gopalan, C., Ratnakumar, C., Mitkova, M.: Programmable metalization cell memory based on Ag-Ge-S and Cu-Se-S solid electrolytes. In: Proc. Non-Volatile Memory Technology Symp. (NVMTS), pp. 83–89 (2005)Google Scholar
  382. 382.
    Kozicki, M.N., Gopalan, C., Balakrishnan, M., Mitkova, M.: A low power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotech. 5(5), 535–544 (2006)Google Scholar
  383. 383.
    Li, H., Chen, Y.: An overview of non-volatile memory technology and the implication for tools and architectures. In: Proc. Design, Automation and Test in Europe, pp. 731–736 (2009)Google Scholar
  384. 384.
    Ignatiev, A., Wu, N.J., Chen, X., Liu, S.Q., Papagianni, C., Strozier, J.: Resistance switching in perovskite thin films. Physica Status Solidi (b) 243(9), 2089–2097 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of Electrical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations