Validation of DRAMMS among 12 Popular Methods in Cross-Subject Cardiac MRI Registration

  • Yangming Ou
  • Dong Hye Ye
  • Kilian M. Pohl
  • Christos Davatzikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7359)

Abstract

Cross-subject image registration is the building block for many cardiac studies. In the literature, it is often handled by voxel-wise registration methods. However, studies are lacking to show which methods are more accurate and stable in this context. Aiming at answering this question, this paper evaluates 12 popular registration methods and validates a recently developed method DRAMMS [16] in the context of cross-subject cardiac registration. Our dataset consists of short-axis end-diastole cardiac MR images from 24 subjects, in which non-cardiac structures are removed. Each registration method was applied to all 552 image pairs. Registration accuracy is approximated by Jaccard overlap between deformed expert annotation of source image and the corresponding expert annotation of target image. This accuracy surrogate is further correlated with deformation aggressiveness, which is reflected by minimum, maximum and range of Jacobian determinants. Our study shows that DRAMMS [16] scores high in accuracy and well balances accuracy and aggressiveness in this dataset, followed by ANTs [13], MI-FFD [14], Demons [15], and ART [12]. Our findings in cross-subject cardiac registrations echo those findings in brain image registrations [7].

Keywords

Image Registration Validation Evaluation Cardiac MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Construction of a Statistical Model for Cardiac Motion Analysis Using Nonrigid Image Registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Isola, A., Grass, M., Niessen, W.J.: Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction. Med. Phy., 1093–1109 (2010)Google Scholar
  3. 3.
    Perperidis, D., Mohiaddin, R., Rueckert, D.: Spatio-temporal free-form registration of cardiac MR image sequences. MedIA 9, 441–456 (2005)Google Scholar
  4. 4.
    Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. TMI, 1612–1625 (2010)Google Scholar
  5. 5.
    Ye, D.H., Litt, H., Davatzikos, C., Pohl, K.M.: Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 180–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q., Katila, T., Magnin, I.E., Axis, L.L.: A review of cardiac image registration methods. TMI 21, 1011–1021 (2002)Google Scholar
  7. 7.
    Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786–802 (2009)CrossRefGoogle Scholar
  8. 8.
    Murphy, K., van Ginneken, B., Reinhardt, J.M., et al.: Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge. TMI 30, 1901–1920 (2011)Google Scholar
  9. 9.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. MedIA 5(2), 143–156 (2001)Google Scholar
  10. 10.
    Andersson, J., Smith, S., Jenkinson, M.: FNIRT–FMRIB’s non-linear image registration tool. Human Brain Mapping (2008)Google Scholar
  11. 11.
    Woods, R., Grafton, S., Holmes, C., Cherry, S., Mazziotta, J.: Automated image registration: I. general methods and intrasubject intramodality validation. JCAT, 139–152 (1998)Google Scholar
  12. 12.
    Ardekani, B., Guckemus, S., Bachman, A., Hoptman, M.J., Wojtaszek, M., Nierenberg, J.: Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J. Neu. Methods. 142, 67–76 (2005)CrossRefGoogle Scholar
  13. 13.
    Avants, B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. MedIA 12, 26–41 (2008)Google Scholar
  14. 14.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. TMI 18, 712–721 (1999)Google Scholar
  15. 15.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient nonparametric image registration. NeuroImage 45(1), 61–72 (2009)CrossRefGoogle Scholar
  16. 16.
    Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting. MedIA, 622–639 (2011)Google Scholar
  17. 17.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. MedIA, 731–741 (2008)Google Scholar
  18. 18.
    Heiberg, E., Sjogren, J., Ugander, M., Carlsson, M., Engblom, H., Arheden, H.: Design and Validation of Segment - a Freely Available Software for Cardiovascular Image Analysis. BMC Medical Imaging 10, 1 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhang, H., Wahle, A., Johnson, R., Scholz, T., Sonka, M.: 4D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function. TMI, 350–364 (2010)Google Scholar
  20. 20.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. TMI 17(1), 87–97 (1998)Google Scholar
  21. 21.
    Christensen, G.E., Geng, X., Kuhl, J.G., Bruss, J., Grabowski, T.J., Pirwani, I.A., Vannier, M.W., Allen, J.S., Damasio, H.: Introduction to the Non-rigid Image Registration Evaluation Project (NIREP). In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 128–135. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yangming Ou
    • 1
  • Dong Hye Ye
    • 1
  • Kilian M. Pohl
    • 1
  • Christos Davatzikos
    • 1
  1. 1.Section of Biomedical Image Analysis (SBIA), Department of RadiologyUniversity of PennsylvaniaUSA

Personalised recommendations