Boron Analysis and Boron Imaging in BNCT

  • Andrea WittigEmail author
  • Wolfgang A. G. Sauerwein


Boron neutron capture therapy (BNCT) strongly depends on the selective uptake of 10B in tumor cells and on the 10B distribution inside single cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure the boron concentration and distribution in tissues and liquids are described in this chapter.


Positron Emission Tomography Inductively Couple Plasma Atomic Emission Spectroscopy Boron Concentration Inductively Couple Plasma Optical Emission Spectrometry Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sauerwein W (1993) Principles and history of neutron capture therapy. Strahlenther Onkol 169(1):1–6PubMedGoogle Scholar
  2. 2.
    Wittig A, Michel J, Moss RL, Stecher-Rasmussen F, Arlinghaus HF, Bendel P et al (2008) Boron analysis and boron imaging in biological materials for boron neutron capture therapy (BNCT). Crit Rev Oncol Hematol 68(1):66–90PubMedCrossRefGoogle Scholar
  3. 3.
    Kobayashi T, Kanda K (1983) Microanalysis system of ppm order B-10 concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl Instrum Methods Phys Res 204:525–531CrossRefGoogle Scholar
  4. 4.
    Konijnenberg MW, Raaijmakers CPJ, Constantine G, Dewit LGH, Mijnheer BJ, Moss RL et al (1993) Prompt gamma-ray analysis to determine 10B-concentrations. In: Soloway AH (ed) Advances in neutron capture therapy. Plenum Press, New York, pp 419–422CrossRefGoogle Scholar
  5. 5.
    Raaijmakers CPJ, Konijnenberg MW, Dewit L, Haritz D, Huiskamp R, Philipp K et al (1995) Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gamma-ray analysis. Acta Oncol 34(4):517–523PubMedCrossRefGoogle Scholar
  6. 6.
    Fairchild RG, Gabel D, Laster BH, Greenberg D, Kiszenick W, Micca PL (1986) Microanalytical techniques for boron analysis using the 10B(n, alpha)7Li reaction. Med Phys 13(1):50–56PubMedCrossRefGoogle Scholar
  7. 7.
    Matsumoto T, Aoki M, Aizawa O (1991) Phantom experiment and calculation for in vivo 10boron analysis by prompt gamma ray spectroscopy. Phys Med Biol 36(3):329–338PubMedCrossRefGoogle Scholar
  8. 8.
    Mukai K, Nakagawa Y, Matsumoto K (1995) Prompt gamma ray spectrometry for in vivo measurement of boron-10 concentration in rabbit brain tissue. Neurol Med Chir (Tokyo) 35:855–860CrossRefGoogle Scholar
  9. 9.
    Wittig A, Huiskamp R, Moss RL, Bet P, Kriegeskotte C, Scherag A et al (2009) Biodistribution of 10B for boron neutron capture therapy (BNCT) in a mouse model after injection of sodium mercaptoundecahydro-closo-dodecaborate and l-para-boronophenylalanine. Radiat Res 172(4):493–499PubMedCrossRefGoogle Scholar
  10. 10.
    Kashino G, Fukutani S, Suzuki M, Liu Y, Nagata K, Masunaga S et al (2009) A simple and rapid method for measurement of 10B-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry. J Radiat Res 50(4):377–382PubMedCrossRefGoogle Scholar
  11. 11.
    Vega-Carrillo HR, Manzanares-Acuna E, Hernandez-Davila VM, Chacon-Ruiz A, Gallego E, Lorente A (2007) Neutron fluence rate measurement using prompt gamma rays. Radiat Prot Dosimetry 126(1–4):265–268PubMedCrossRefGoogle Scholar
  12. 12.
    Munck af Rosenschold PM, Verbakel WF, Ceberg CP, Stecher-Rasmussen F, Persson BR (2001) Toward clinical application of prompt gamma spectroscopy for in vivo monitoring of boron uptake in boron neutron capture therapy. Med Phys 28(5):787–795PubMedCrossRefGoogle Scholar
  13. 13.
    Verbakel WF, Sauerwein W, Hideghety K, Stecher-Rasmussen F (2003) Boron concentrations in brain during boron neutron capture therapy: in vivo measurements from the phase I trial EORTC 11961 using a gamma-ray telescope. Int J Radiat Oncol Biol Phys 55(3):743–756PubMedCrossRefGoogle Scholar
  14. 14.
    Evans EH, Giglio JJ (1993) Interferences in inductively coupled plasma mass spectrometry – a review. J Anal Atomic Spectrom 8:1–18CrossRefGoogle Scholar
  15. 15.
    Gregoire DC (1987) Determination of boron isotope ratios in geological materials by inductively coupled plasma mass spectrometry. Anal Chem 59:2479–2484CrossRefGoogle Scholar
  16. 16.
    Gregoire DC (1990) Determination of boron in fresh and saline waters by inductively coupled plasma mass spectrometry. J Anal Atomic Spectrom 5:623–626CrossRefGoogle Scholar
  17. 17.
    Al-Ammar A, Reitznerová E, Barnes RM (2000) Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B 55:1861–1867CrossRefGoogle Scholar
  18. 18.
    Evans S, Krahenbuhl U (1994) Boron analysis in biological material: microwave digestion procedure and determination by different methods. Fresenius Z Anal Chem 349:454–459CrossRefGoogle Scholar
  19. 19.
    Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77:497–505CrossRefGoogle Scholar
  20. 20.
    Smith F, Wiederin DR, Houk RS, Egan CB, Serfass RE (1991) Measurement of boron concentration and isotope ratios in biological samples by inductively coupled plasma mass spectrometry with direct injection nebulisation. Anal Chim Acta 248:229–234CrossRefGoogle Scholar
  21. 21.
    Vanhoe H, Dams R, Vandecasteele C, Versieck J (1993) Determination of boron in human serum by inductively coupled plasma mass spectrometry after a simple dilution of the sample. Anal Chim Acta 281:401–411CrossRefGoogle Scholar
  22. 22.
    Laakso J, Kulvik M, Ruokonen I, Vahatalo J, Zilliacus R, Farkkila M et al (2001) Atomic emission method for total boron in blood during neutron-capture therapy. Clin Chem 47(10):1796–1803PubMedGoogle Scholar
  23. 23.
    Heber EM, Kueffer PJ, Lee MW Jr, Hawthorne MF, Garabalino MA, Molinari AJ et al (2012) Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential. Radiat Environ Biophys 51(2):195–204PubMedCrossRefGoogle Scholar
  24. 24.
    Ficq A (1951) Autoradiographie par neutrons: dosage du lithium dans les embryons d’amphibiens. C R Acad Sci 233:1684–1685Google Scholar
  25. 25.
    Edwards LC (1956) Autoradiography by neutron activation: the cellular distribution of 10B in the transplanted mouse brain tumor. Int J Appl Radiat Isot 1:184–190PubMedCrossRefGoogle Scholar
  26. 26.
    Solares G, Zamenhof R, Saris S, Walzer D, Kerley S, Joyce M et al (1992) Biodistribution and Pharmacokinetics of p-Borono-phenylalanine in C57BL/6 Mice with GL261 Intracerebral Tumours, and Survival Following Neutron Capture Therapy for Cancer. In: Allen BJ, Harrington BV, Moore DE (eds) Progress in neutron capture therapy for cancer. Plenum Press, New York, London, pp 475–478CrossRefGoogle Scholar
  27. 27.
    Solares GR, Zamenhof RG (1995) A novel approach to the microdosimetry of neutron capture therapy. Part I. High-resolution quantitative autoradiography applied to microdosimetry in neutron capture therapy. Radiat Res 144:50–58PubMedCrossRefGoogle Scholar
  28. 28.
    Yam CS, Solares GR, Zamenhof RG (1994) Validation of the HR microdosimetry. Trans Am Nucl Soc 71:142–144Google Scholar
  29. 29.
    Goodarzi S, Pazirandeh A, Jameie SB, Baghban Khojasteh N (2012) Differentiation in boron distribution in adult male and female rats’ normal brain: a BNCT approach. Appl Radiat Isot 70(6):952–956PubMedCrossRefGoogle Scholar
  30. 30.
    Kiger WS 3rd, Micca PL, Morris GM, Coderre JA (2002) Boron microquantification in oral muscosa and skin following administration of a neutron capture therapy agent. Radiat Prot Dosimetry 99(1–4):409–412PubMedCrossRefGoogle Scholar
  31. 31.
    Solares GR, Zamenhof RG, Cano G (eds) (1993) Microdosimetry and compound factors for neutron capture therapy. Plenum Press, New YorkGoogle Scholar
  32. 32.
    Alfassi ZB, Probst TU (1999) On the calibration curve for determination of boron in tissue by quantitative neutron capture radiography. NIM A 428:502–507CrossRefGoogle Scholar
  33. 33.
    Pugliesi R, Pereira MAS (2002) Study of the neutron radiography characteristics for the solid state nuclear track detector makrofol-de. NIM A 484:613–618CrossRefGoogle Scholar
  34. 34.
    Roveda L, Prati U, Bakeine J, Trotta F, Marotta P, Valsecchi P (2004) How to study boron biodistribution in liver metastases from colorectal cancer. J Chemother 16(Suppl 5):5–8Google Scholar
  35. 35.
    Altieri S, Bortolussi S, Bruschi P, Chiari P, Fossati F, Stella S et al (2008) Neutron autoradiography imaging of selective boron uptake in human metastatic tumours. Appl Radiat Isot 66(12):1850–1855PubMedCrossRefGoogle Scholar
  36. 36.
    Schutz C, Brochhausen C, Altieri S, Bartholomew K, Bortolussi S, Enzmann F et al (2011) Boron determination in liver tissue by combining quantitative neutron capture radiography (QNCR) and histological analysis for BNCT treatment planning at the TRIGA Mainz. Radiat Res 176(3):388–396PubMedCrossRefGoogle Scholar
  37. 37.
    Nano R, Barni S, Chiari P, Pinelli T, Fossati F, Altieri S et al (2004) Efficacy of boron neutron capture therapy on liver metastases of colon adenocarcinoma: optical and ultrastructural study in the rat. Oncol Rep 11(1):149–153PubMedGoogle Scholar
  38. 38.
    Chiaraviglio D, De Grazia F, Zonta A, Altieri S, Braghieri A, Fossati F et al (1989) Evaluation of selective boron absorption in liver tumors. Strahlenther Onkol 1989(2/3):170–172Google Scholar
  39. 39.
    Enge W, Grabisch K, Beaujean R, Bartholoma KP (1974) Etching behaviour of cellulose nitrate plastic detector under various etching conditions. NIM 115:263–270Google Scholar
  40. 40.
    Bennett BD, Zha X, Gay I, Morrison GH (1992) Intracellular boron localization and uptake in cell cultures using imaging secondary ion mass spectrometry (ion microscopy) for neutron capture therapy for cancer. Biol Cell 74(1):105–108PubMedCrossRefGoogle Scholar
  41. 41.
    Chandra S, Morrison GM (1992) Sample preparation of animal tissues and cell cultures for secondary ion mass spectrometry (SIMS) microscopy. Biol Cell 74:31–42PubMedCrossRefGoogle Scholar
  42. 42.
    Chandra S, Smith DR, Morrison GH (2000) Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem 72(3):104A–114APubMedCrossRefGoogle Scholar
  43. 43.
    Chandra S, Lorey ID, Smith DR (2002) Quantitative subcellular secondary ion mass spectrometry (SIMS) imaging of boron-10 and boron-11 isotopes in the same cell delivered by two combined BNCT drugs: in vitro studies on human glioblastoma T98G cells. Radiat Res 157(6):700–710PubMedCrossRefGoogle Scholar
  44. 44.
    Smith DR, Chandra S, Barth RF, Yang W, Joel DD, Coderre JA (2001) Quantitative imaging and microlocalization of boron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy: relevance to neutron capture therapy. Cancer Res 61(22):8179–8187PubMedGoogle Scholar
  45. 45.
    Yokoyama K, Miyatake S, Kajimoto Y, Kawabata S, Doi A et al (2007) Analysis of boron distribution in vivo for boron neutron capture therapy using two different boron compounds by secondary ion mass spectrometry. Radiat Res 67(1):102–109CrossRefGoogle Scholar
  46. 46.
    Arlinghaus HF, Spaar MT, Switzer RC, Kabalka GW (1997) Imaging of boron in tissue at the cellular level for boron neutron capture therapy. Anal Chem 69(16):3169–3176PubMedCrossRefGoogle Scholar
  47. 47.
    Fartmann M, Kriegeskotte C, Dambach S, Wittig A, Sauerwein W, Arlinghaus HF (2004) Quantitative imaging of atomic and molecular species in cancer cultures with TOF-SIMS and Laser-SNMS. Appl Surf Sci 231(2(SI)):428–431CrossRefGoogle Scholar
  48. 48.
    Arlinghaus HF (ed) (2002) Laser Secondary Neutral Mass Spectrometry (Laser-SNMS). Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  49. 49.
    Arlinghaus HF, Kriegeskotte C, Fartmann M, Wittig A, Sauerwein W, Lipinsky D (2006) Mass spectrometric characterization of elements and molecules in cell cultures and tissues. Appl Surf Sci 252:6941–6948CrossRefGoogle Scholar
  50. 50.
    Fartmann M, Dambach S, Kriegeskotte C, Lipinsky D, Wiesmann HP, Wittig A et al (2003) Subcellular imaging of freeze-fractured cell cultures by TOF-SIMS and Laser SNMS. Appl Surf Sci 203–204:726–729CrossRefGoogle Scholar
  51. 51.
    Wittig A, Wiemann M, Fartmann M, Kriegeskotte C, Arlinghaus HF, Zierold K et al (2005) Preparation of cells cultured on silicon wafers for mass spectrometry analysis. Microsc Res Tech 66(5):248–258PubMedCrossRefGoogle Scholar
  52. 52.
    Arlinghaus HF, Fartmann M, Kriegeskotte C, Dambach S, Wittig A, Sauerwein W et al (2004) Subcellular imaging of cell cultures and tissue for boron localization with laser-SNMS. Surf Interface Anal 36(8):698–701CrossRefGoogle Scholar
  53. 53.
    Bourdos N, Kollmer F, Benninghoven A, Sieber M, Galla HJ (2000) Imaging of domain structures in a one-component lipid monolayer by time-of-flight secondary ion mass spectrometry. Langmuir 16(4):1481–1484CrossRefGoogle Scholar
  54. 54.
    Neumann M, Kunz U, Lehmann H, Gabel D (2002) Determination of the subcellular distribution of mercaptoundecahydro-closo-dodecaborate (BSH) in human glioblastoma multiforme by electron microscopy. J Neurooncol 57(2):97–104PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu Y, Egerton RF, Malac M (2001) Concentration limits for the measurement of boron by electron energy loss spectroscopy and electron-spectroscopic imaging. Ultramicroscopy 87:135–145PubMedCrossRefGoogle Scholar
  56. 56.
    Michel J, Sauerwein W, Wittig A, Balossier G, Zierold K (2003) Subcellular localization of boron in cultured melanoma cells by electron energy-loss spectroscopy of freeze-dried cryosections. J Microsc 210(Pt 1):25–34PubMedCrossRefGoogle Scholar
  57. 57.
    Isaacson I, Johnson D (1975) The microanalysis of light elements using transmitted energy-loss electrons. Ultramicroscopy 1:33–52PubMedCrossRefGoogle Scholar
  58. 58.
    Leapman RD, Kocsis E, Zhang G, Talbot TL, Laquerriere P (2004) Three dimensional distribution of elements in biological samples by energy filtered electron tomography. Ultramicroscopy 100:115–125PubMedCrossRefGoogle Scholar
  59. 59.
    Michel J, Bonnet N (2001) Optimization of digital filters for the detection of trace elements in electron energy loss spectroscopy. Gaussian, homomorphic and adaptive filters. Ultramicroscopy 88:231–242PubMedCrossRefGoogle Scholar
  60. 60.
    March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369CrossRefGoogle Scholar
  61. 61.
    Mauri PL, Basilico F, Pietta PG, Pasini E, Monti D, Sauerwein W (2003) New approach for the detection of BSH and its metabolites using capillary electrophoresis and electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 788(1):9–16PubMedCrossRefGoogle Scholar
  62. 62.
    Basilico F, Sauerwein W, Pozzi F, Wittig A, Moss R, Mauri PL (2005) Analysis of 10B antitumoral compounds by means of flow-injection into ESI-MS/MS. J Mass Spectrom 40(12):1546–1549PubMedCrossRefGoogle Scholar
  63. 63.
    Washburn MP, Wolters D, Yates JRI (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  64. 64.
    Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: A strategy for identification of novel cancer markers. FASEB J 19:1125–1127PubMedGoogle Scholar
  65. 65.
    Beretta L (2007) Proteomics from the clinical perspective: many hopes and much debate. Nat Methods 4:787–796CrossRefGoogle Scholar
  66. 66.
    Bendel P (2005) Biomedical applications of 10B and 11B NMR. NMR Biomed 18(2):74–82PubMedCrossRefGoogle Scholar
  67. 67.
    Bendel P, Koudinova N, Salomon Y (2001) In vivo imaging of the neutron capture therapy agent BSH in mice using 10B MRI. Magn Reson Med 46:13–17PubMedCrossRefGoogle Scholar
  68. 68.
    Porcari P, Capuani S, D’Amore E, Lecce M, La Bella A, Fasano F et al (2009) In vivo 19F MR imaging and spectroscopy for the BNCT optimization. Appl Radiat Isot 67(7–8 Suppl):S365–S368PubMedCrossRefGoogle Scholar
  69. 69.
    Martínez MJ, Ziegler SI, Beyer T (2008) PET and PET/CT: basic principles and instrumentation. Recent Results Cancer Res 170:1–23PubMedCrossRefGoogle Scholar
  70. 70.
    Schöder H, Erdi YE, Larson SM, Yeung HW (2003) PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 30:1419–1437PubMedCrossRefGoogle Scholar
  71. 71.
    Lecchi M, Fossati P, Elisei F, Orecchia R, Lucignani G (2008) Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 35(4):821–837PubMedCrossRefGoogle Scholar
  72. 72.
    Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U et al (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181(8):483–499PubMedCrossRefGoogle Scholar
  73. 73.
    Kabalka GW, Nichols TL, Smith GT, Miller LF, Khan MK, Busse PM (2003) The use of positron emission tomography to develop boron neutron capture therapy treatment plans for metastatic malignant melanoma. J Neurooncol 62(1–2):187–195PubMedGoogle Scholar
  74. 74.
    Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R et al (1998) Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39(2):325–333PubMedGoogle Scholar
  75. 75.
    Imahori Y, Ueda S, Ohmori Y, Sakae K, Kusuki T, Kobayashi T et al (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res 4(8):1833–1841PubMedGoogle Scholar
  76. 76.
    Ariyoshi Y, Miyatake S, Kimura Y, Shimahara T, Kawabata S, Nagata K et al (2007) Boron neuron capture therapy using epithermal neutrons for recurrent cancer in the oral cavity and cervical lymph node metastasis. Oncol Rep 18(4):861–866PubMedGoogle Scholar
  77. 77.
    Nariai T, Ishiwata K, Kimura Y, Inaji M, Momose T, Yamamoto T et al (2009) PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma. Appl Radiat Isot 67(7–8 Suppl):S348–S350PubMedCrossRefGoogle Scholar
  78. 78.
    Havu-Auren K, Kiiski J, Lehtio K, Eskola O, Kulvik M, Vuorinen V et al (2007) Uptake of 4-borono-2-[18F]fluoro-L-phenylalanine in sporadic and neurofibromatosis 2-related schwannoma and meningioma studied with PET. Eur J Nucl Med Mol Imaging 34(1):87–94PubMedCrossRefGoogle Scholar
  79. 79.
    Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A et al (2006) First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-BPA PET. Head Neck 28(9):850–855PubMedCrossRefGoogle Scholar
  80. 80.
    Takahashi Y, Imahori Y, Mineura K (2003) Prognostic and therapeutic indicator of fluoroboronophenylalanine positron emission tomography in patients with gliomas. Clin Cancer Res 9(16 Pt 1):5888–5895PubMedGoogle Scholar
  81. 81.
    Wyss MT, Hofer S, Hefti M, Bartschi E, Uhlmann C, Treyer V et al (2007) Spatial heterogeneity of low-grade gliomas at the capillary level: a PET study on tumor blood flow and amino acid uptake. J Nucl Med 48(7):1047–1052PubMedCrossRefGoogle Scholar
  82. 82.
    Wang HE, Wu SY, Chang CW, Liu RS, Hwang LC, Lee TW et al (2005) Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl Med Biol 32(4):367–375PubMedCrossRefGoogle Scholar
  83. 83.
    Ishiwata K, Kawamura K, Wang WF, Furumoto S, Kubota K, Pascali C et al (2004) Evaluation of O-[11C]methyl-L-tyrosine and O-[18F]fluoromethyl-L-tyrosine as tumor imaging tracers by PET. Nucl Med Biol 31(2):191–198PubMedCrossRefGoogle Scholar
  84. 84.
    Minsky DM, Valda AA, Kreiner AJ, Green S, Wojnecki C, Ghani Z (2011) First tomographic image of neutron capture rate in a BNCT facility. Appl Radiat Isot 69(12):1858–1861PubMedCrossRefGoogle Scholar
  85. 85.
    Murata I, Mukai T, Nakamura S, Miyamaru H, Kato I (2011) Development of a thick CdTe detector for BNCT-SPECT. Appl Radiat Isot 69(12):1706–1709PubMedCrossRefGoogle Scholar
  86. 86.
    Wittig A, Malago M, Collette L, Huiskamp R, Buhrmann S, Nievaart V et al (2008) Uptake of two 10B-compounds in liver metastases of colorectal adenocarcinoma for extracorporeal irradiation with boron neutron capture therapy (EORTC Trial 11001). Int J Cancer 122(5):1164–1171PubMedCrossRefGoogle Scholar
  87. 87.
    Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM et al (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149(2):163–170PubMedCrossRefGoogle Scholar
  88. 88.
    Thellier M, Hennequin E, Heurteaux C, Martini F, Pettersson M, Fernandez T et al (1988) Quantitative estimations in neutron capture radiography. Nucl Instrum Methods Phys Res B 30:567–579CrossRefGoogle Scholar
  89. 89.
    Haselsberger K, Radner H, Gössler W, Schagenhaufen C, Pendl G (1994) Subcellular boron-10 localization in glioblastoma for boron neutron capture therapy with Na2B12H11SH. J Neurosurg 81:741–744PubMedCrossRefGoogle Scholar
  90. 90.
    Michel J, Balossier G, Wittig A, Sauerwein W, Zierold K (2005) EELS Sprctrum-Imaging for boron detection in biological cryofixed tissues. Instrumentation Sciences and Technology 33:632–644Google Scholar
  91. 91.
    Bendel P, Koudinova N, Salomon Y, Hideghéty K, Sauerwein W (2002) Imaging of BSH by 10B MRI. In: Sauerwein W, Moss R, Wittig A, editors. Research and Development in Neutron Capture Therapy, Bologna: Monduzzi Editore, Bologna 877–880Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiotherapy and Radiation OncologyPhilipps-University MarburgMarburgGermany
  2. 2.NCTeam, Department of Radiation OncologyUniversity Hospital Essen, University Duisburg-EssenEssenGermany

Personalised recommendations