Boron Compounds: New Candidates for Boron Carriers in BNCT

  • Hiroyuki Nakamura
  • Mitsunori Kirihata


The high accumulation and selective delivery of 10B into the tumor tissue are the most important requirements to achieve efficient neutron capture therapy for cancer. So far, two boron compounds, sodium mercaptoundecahydrododecaborate (Na 2 10 B12H11SH; Na 2 10 BSH) and L-p-boronophenylalanine (L-10BPA), have been clinically utilized for the treatment of patients with malignant brain tumors and malignant melanoma. Recently, BNCT has been applied to various cancers, including head and neck cancer, lung cancer, hepatoma, chest wall cancer, and mesothelioma. Therefore, the development of new boron carriers is one of the most important issues that should be resolved to extend the application of BNCT to various cancers. In the last decade, boron carrier development has taken two directions: small boron molecules and boron-conjugated biological complexes. Unlike approaches using pharmaceuticals, boron carriers require high tumor selectivity and should be essentially nontoxic. Therefore, the latter approach has become one of the recent trends to accumulate a large amount of 10B in tumor tissues. In this review, new and promising candidates for boron carriers developed in the last 10 years are summarized.


Epidermal Growth Factor Receptor Boron Concentration Epidermal Growth Factor Receptor Gene Boron Compound Boron Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Soloway AH, Tjarks W, Barnum BA et al (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562PubMedCrossRefGoogle Scholar
  2. 2.
    Hawthorne MF (1993) The role of chemistry in the development of boron neutron capture therapy of cancer. Angew Chem Int Ed Engl 32:950–984CrossRefGoogle Scholar
  3. 3.
    Barth RF, Soloway AH, Fairchild RG et al (1992) Boron neutron capture therapy for cancer, realities and prospects. Cancer 70:2995–3007PubMedCrossRefGoogle Scholar
  4. 4.
    Soloway AH, Hatanaka H, Davis MA (1967) Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem 10:714–717PubMedCrossRefGoogle Scholar
  5. 5.
    Snyder HR, Reedy AJ, Lennarz WJ (1958) Synthesis of aromatic boronic acids. Aldehydo boronic acids and a boronic acid analog of tyrosine. J Am Chem Soc 80:835CrossRefGoogle Scholar
  6. 6.
    Nakagawa Y, Hatanaka H (1997) Boron neutron capture therapy. Clinical brain tumor studies. J Neurooncol 33:105–115PubMedCrossRefGoogle Scholar
  7. 7.
    Mishima Y, Ichihashi M, Hatta S et al (1989) New thermal neutron capture therapy for malignant melanoma: melanogenesis-seeking 10B molecule-melanoma cell interaction from in vitro to first clinical trial, pigment. Cell Res 2:226–234Google Scholar
  8. 8.
    Kato I, Ono K, Sakurai Y et al (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073PubMedCrossRefGoogle Scholar
  9. 9.
    Aihara T, Hiratsuka J, Morita N et al (2006) First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-BPA PET. Head Neck 28:850–855PubMedCrossRefGoogle Scholar
  10. 10.
    Suzuki M, Sakurai Y, Hagiwara S et al (2007) First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma. Jpn J Clin Oncol 37:376–381PubMedCrossRefGoogle Scholar
  11. 11.
    Adams L, Hosmane SN, Eklund JE et al (2002) A new synthetic route to boron-10 enriched pentaborane(9) from boric acid and its conversion to anti-10B18H22. J Am Chem Soc 124:7292–7293PubMedCrossRefGoogle Scholar
  12. 12.
    El-Zaria ME, Dorfler U, Gabel D (2002) Synthesis of (aminoalkylamine)-N-aminoalkyl)azanonaborane(11) derivatives for boron neutron capture therapy. J Med Chem 45:5817–5819PubMedCrossRefGoogle Scholar
  13. 13.
    Srivastava RR, Singhaus RR, Kabalka GW (1999) 4-Dihydroxyborylphenyl analogues of 1-aminocyclobutanecarboxylic acids: potential boron neutron capture therapy agents. J Org Chem 64:8495–8500CrossRefGoogle Scholar
  14. 14.
    Kabalka GW, Wu ZZ, Yao M-L et al (2004) The syntheses and in vivo biodistribution of novel boronated unnatural amino acids. Appl Radiat Isot 61:1111–1115PubMedCrossRefGoogle Scholar
  15. 15.
    Slepukhina I, Gabel D, (2006) Synthesis and in vitro toxicity of new dodecaborate-containing amino acids. In: Nakagawa Y, Kobayashi T, Fukuda H. (eds.) Proceedings of ICNCT-12:247–250Google Scholar
  16. 16.
    Hattori Y, Kurihara K, Niki Y et al (2006) Synthesis and evaluation of the compounds containing 10B and 19F atoms as boron carrier and imaging agent. Peptide Sci 2005:337–340Google Scholar
  17. 17.
    Dewar MJS, Maitlis PM (1959) A boron-containing purine analog. J Am Chem Soc 81:6329–6330CrossRefGoogle Scholar
  18. 18.
    Matteson DS, Cheng T-C (1968) Displacement reactions of dibutyl iodomethaneboronate and the synthesis of boron-substituted pyrimidines. J Org Chem 33:3055–3060CrossRefGoogle Scholar
  19. 19.
    Al-Madhoun AS, Johnsamuel J, Barth RF et al (2004) Evaluation of human thymidine kinase 1 substrates as new candidates for boron neutron capture therapy. Cancer Res 64:6280–6286PubMedCrossRefGoogle Scholar
  20. 20.
    Olejniczak AB, Plesek J, Lesnikowski ZJ (2006) Nucleoside-metallacarborane conjugates for base-specific metal labeling of DNA. Chem Eur J 13:311–318CrossRefGoogle Scholar
  21. 21.
    Kahl SB, Koo MS (1990) Synthesis of tetrakis-carborane-carboxylate esters of 2,4-bis-(α,β-dihydroxyethyl)-deuteroporphyrin IX. Chem Commun 1769–1771Google Scholar
  22. 22.
    Hill JS, Kahl SB, Kaye AH et al (1992) Selective tumor uptake of a boronated porphyrin in an animal model of cerebral glioma. Proc Natl Acad Sci USA 89:1785–1789PubMedCrossRefGoogle Scholar
  23. 23.
    Miura M, Gabel D, Oenbrink G et al (1990) Preparation of carboranyl porphyrins for boron neutron capture therapy. Tetrahedron Lett 31:2247–2250CrossRefGoogle Scholar
  24. 24.
    Phadke AS, Morgan AR (1993) Synthesis of carboranyl porphyrins: potential drugs for boron neutron capture therapy. Tetrahedron Lett 34:1725–1728CrossRefGoogle Scholar
  25. 25.
    Oenbrink G, Jurgenlimke P, Gabel D (1988) Accumulation of porphyrins in cells influence of hydrophobicity aggregation and protein binding. Photochem Photobiol 48:451–456PubMedCrossRefGoogle Scholar
  26. 26.
    Rosenthal MA, Kavar B, Hill JS et al (2001) Phase I and pharmacokinetic study of photodynamic therapy for high-grade gliomas using a novel boronated porphyrin. J Clin Oncol 19:519–524PubMedGoogle Scholar
  27. 27.
    Vicente MGH, Edwards BF, Shetty SJ et al (2002) Syntheses and preliminary biological studies of four meso-tetra[(nido-carboranylmethyl) phenyl ] porphyrins. Bioorg Med Chem 10:481–492PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumura A, Shibata Y, Yamamoto T et al (1999) A new boronated porphyrin (STA-BX909) for neutron capture therapy: an in vitro survival assay and in vivo tissue uptake study. Cancer Lett 141:203–209PubMedCrossRefGoogle Scholar
  29. 29.
    Ratajski M, Osterloh J, Gabel D (2006) Boron-containing chlorins and tetraazaporphyrins: synthesis and cell uptake of boronated pyropheophorbide A derivatives. Anti-Cancer Agents Med Chem 6:159–166CrossRefGoogle Scholar
  30. 30.
    Ol’shevskaya VA, Evstigneeva RP, Luzgina VN et al (2001) Synthesis of closo-monocarbon carborane-substituted natural porphyrins. Mendeleev Commun 11:14–15CrossRefGoogle Scholar
  31. 31.
    Hao E, Sibrian-Vazquez M, Serem W, Garno JC (2007) Synthesis, aggregation and cellular investigations of porphyrin–cobaltacarborane conjugates. Chem Eur J 13:9035–9042PubMedCrossRefGoogle Scholar
  32. 32.
    Bauer C, Gabel D, Dörfler U (2002) Azanonaboranes [(RNH2)B8H11NHR] as possible new compounds for use in boron neutron capture therapy. Eur J Med Chem 37:649–657PubMedCrossRefGoogle Scholar
  33. 33.
    Tjarks W, Anisuzzaman AKM, Liu L et al (1992) Synthesis and in vitro evaluation of boronated uridine and glucose derivatives for boron neutron capture therapy. J Med Chem 35:1628–1633PubMedCrossRefGoogle Scholar
  34. 34.
    Tietze LF, Bothe U (1998) Ortho-carboranyl glycosides of glucose, mannose, maltose and lactose for cancer treatment by boron neutron-capture therapy. Chem Eur J 4:1179–1183CrossRefGoogle Scholar
  35. 35.
    Tietze LF, Bothe U, Griesbach U et al (2001) ortho-Carboranyl glycosides for the treatment of cancer by boron neutron capture therapy. Bioorg Med Chem 9:1747–1752PubMedCrossRefGoogle Scholar
  36. 36.
    Giovenzana GB, Lay L, Monti D et al (1999) Synthesis of carboranyl derivatives of alkynyl glycosides as potential BNCT agents. Tetrahedron 55:14123–14136CrossRefGoogle Scholar
  37. 37.
    Stadlbauer S, Welzel P, Hey-Hawkins E (2009) Access to carbaboranyl glycophosphonates: an Odyssey. Inorg Chem 48:55005–55010Google Scholar
  38. 38.
    Ronchi S, Prosperi D, Thimon C et al (2005) Synthesis of mono- and bisglucuronylated carboranes. Tetrahedron Asymmet 16:39–44CrossRefGoogle Scholar
  39. 39.
    El-Zaria ME, Genady AR, Gabel D (2006) The first synthesis of azanonaborane-containing sugars, possible boron carriers for neutron capture therapy. New J Chem 30:597–602CrossRefGoogle Scholar
  40. 40.
    Endo Y, Iijima T, Yamakoshi Y et al (1999) Potent estrogenic agonists bearing dicarba-closo-dodecaborane as a hydrophobic pharmacophore. J Med Chem 42:1501–1504PubMedCrossRefGoogle Scholar
  41. 41.
    Endo Y, Iijima T, Yamakoshi Y et al (2001) Potent estrogen agonists based on carborane as a hydrophobic skeletal structure. A new medicinal application of boron clusters. Chem Biol 8:341–355PubMedCrossRefGoogle Scholar
  42. 42.
    Julius RL, Farha OK, Chiang J et al (2007) Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proc Natl Acad Sci USA 104:4808–4813PubMedCrossRefGoogle Scholar
  43. 43.
    Lee C-H, Jin GF, Yoon JH et al (2008) Synthesis and characterization of polar functional group substituted mono- and bis-(o-carboranyl)-1,3,5-triazine derivatives. Tetrahedron Lett 49:159–164CrossRefGoogle Scholar
  44. 44.
    Armstrong AF, Valliant JF (2007) The bioinorganic and medicinal chemistry of carboranes: from new drug discovery to molecular imaging and therapy. Dalton Trans 4240–4251Google Scholar
  45. 45.
    Barth RF, Adams DM, Soloway AH et al (1994) Boronated starburst dendrimer-monoclonal antibody immunoconjugates. Evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem 5:58–66PubMedCrossRefGoogle Scholar
  46. 46.
    Shukla S, Wu G, Chatterjee M et al (2003) Synthesis and biological evaluation of folate receptor-targeted boronated pamam dendrimers as potential agents for neutron capture therapy. Bioconjug Chem 14:158–167PubMedCrossRefGoogle Scholar
  47. 47.
    Yinghuai Z, Peng A, Carpenter K et al (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127:9875–9880PubMedCrossRefGoogle Scholar
  48. 48.
    Hosmane NS, Yinghuai Z, Maguire JA et al (2009) Nano and dendritic structured carboranes and metallacarboranes: from materials to cancer therapy. J Organomet Chem 694:1690–1697CrossRefGoogle Scholar
  49. 49.
    Azab A-K, Srebnik M, Doviner V, Rubinstein A (2005) Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers. J Control Release 106:14–25PubMedCrossRefGoogle Scholar
  50. 50.
    Capala J, Barth RF, Bendayan M (1996) Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 7:7–15PubMedCrossRefGoogle Scholar
  51. 51.
    Barth RF, Yang W, Adams DM et al (2002) Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas. Cancer Res 62:3159–3166PubMedGoogle Scholar
  52. 52.
    Wu G, Barth RF, Yang W et al (2004) Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem 15:185–194PubMedCrossRefGoogle Scholar
  53. 53.
    Wu G, Yang W, Barth RF et al (2007) Molecular targeting and treatment of an epidermal growth factor receptor positive glioma using boronated cetuximab. Clin Cancer Res 13:1260–1268PubMedCrossRefGoogle Scholar
  54. 54.
    Suzuki M, Sakurai Y, Masunaga S et al (2003) Study of boron neutron capture therapy with borocaptate sodium (BSH)/lipiodol emulsion (BSH/lipiodol-BNCT) for treatment of multiple liver tumors. Int J Radiat Oncol Biol Phys 58:892–896CrossRefGoogle Scholar
  55. 55.
    Suzuki M, Nagata K, Masunaga S et al (2004) Biodistribution of 10B in a rat liver tumor model following intra-arterial administration of sodium borocaptate (BSH)/degradable starch microspheres (DSM) emulsion. Appl Radiat Isot 61:933–937PubMedCrossRefGoogle Scholar
  56. 56.
    Yanagie H, Higashi S, Ikushima I et al. (2006) Selective enhancement of boron accumulation with boron-entrapped water-in-oil–water emulsion in VX-2 rabbit hepatic cancer model for BNCT. In: Nakagawa Y, Kobayashi T, Fukuda H. (eds.) Proceedings of ICNCT-12:211–214Google Scholar
  57. 57.
    Kaneda Y, Yamamoto S, Hiraoka K (2003) The hemagglutinating virus of Japan-liposome method for gene delivery. Methods Enzymol 373:482–493PubMedCrossRefGoogle Scholar
  58. 58.
    Nakai K, Yamamoto T, Matsumura A (2006) Application of HVJ envelop system to boron neutron capture therapy. In: Nakagawa Y, Kobayashi T, Fukuda H. (eds.) Proceedings of ICNCT-12:207–210Google Scholar
  59. 59.
    Yanagie H, Tomita T, Kobayashi H et al (1991) Application of boronated anti-cea immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model. Br J Cancer 63:522–526PubMedCrossRefGoogle Scholar
  60. 60.
    Yanagie H, Tomita T, Kobayashi H et al (1997) Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer 75:660–665PubMedCrossRefGoogle Scholar
  61. 61.
    Sherry K, Feakes DA, Hawthorne MF et al (1992) Model studies directed toward the boron neutron-capture therapy of cancer: Boron delivery to murine tumors with liposomes. Proc Natl Acad Sci USA 89:9039–9043CrossRefGoogle Scholar
  62. 62.
    Feakes DA, Shelly K, Knobler DB et al (1994) Na3[B20H17NH3]: synthesis and liposomal delivery to murine tumors. Proc Natl Acad Sci USA 91:3029–3033PubMedCrossRefGoogle Scholar
  63. 63.
    Pan XQ, Wang H, Shukla S et al (2002) Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem 13:435–442PubMedCrossRefGoogle Scholar
  64. 64.
    Kullberg EB, Carlsson J, Edwards K et al (2003) Introductory experiments on ligand liposomes as delivery agents for boron neutron capture therapy. Int J Oncol 23:461–467Google Scholar
  65. 65.
    Maruyama K, Ishida O, Kasaoka S et al (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Release 98:195–207PubMedCrossRefGoogle Scholar
  66. 66.
    Yanagie H, Ogura K, Takaagi K et al (2004) Accumulation of boron compounds to tumor with polyethylene-glycol binding liposome by using neutron capture autoradiography. Appl Radiat Isot 61:639–646PubMedCrossRefGoogle Scholar
  67. 67.
    Masunaga S, Kasaoka S, Maruyama K et al (2006) The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulating decahydrodecaborate-10B (GB-10) as 10B-carriers for boron neutron capture therapy. Int J Radiat Oncol Biol Phys 66:1515–1522PubMedCrossRefGoogle Scholar
  68. 68.
    Pan X, Wu G, Yang W et al (2007) Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug Chem 18:101–108PubMedCrossRefGoogle Scholar
  69. 69.
    Feakes DA, Shelly K, Hawthornet MF (1995) Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci USA 92:1367–1370PubMedCrossRefGoogle Scholar
  70. 70.
    Nakamura H, Miyajima Y, Takei T et al. (2004) Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. Chem Commun 1910–1911Google Scholar
  71. 71.
    Miyajima Y, Nakamura H, Kuwata Y et al (2006) Transferrin-loaded nido-Carborane liposomes: tumor-targeting boron delivery system for neutron capture therapy. Bioconjug Chem 17:1314–1320PubMedCrossRefGoogle Scholar
  72. 72.
    Li T, Hamdi J, Hawthrone MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20PubMedCrossRefGoogle Scholar
  73. 73.
    Lee J-D, Ueno M, Miyajima Y, Nakamura H (2007) Synthesis of boron cluster lipids: closo-Dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org Lett 9:323–326PubMedCrossRefGoogle Scholar
  74. 74.
    Nakamura H, Lee J-D, Ueno M, Miyajima Y, Ban HS (2008) Synthesis of closo-dodecaboryl lipids and their liposomal formation for boron neutron capture therapy. NanoBiotechnology 3:135–145CrossRefGoogle Scholar
  75. 75.
    Nakamura H, Ueno M, Ban HS et al (2009) Development of boron nano capsules for neutron capture therapy. Appl Radiat Isot 67:S84–S87PubMedCrossRefGoogle Scholar
  76. 76.
    Justus E, Awad D, Hohnholt M et al (2007) Synthesis, liposomal preparation, and in vitro toxicity of two novel dodecaborate cluster lipids for boron neutron capture therapy. Bioconjug Chem 18:1287–1293PubMedCrossRefGoogle Scholar
  77. 77.
    Feakes DA, Spinler JK, Harris FR (1999) Synthesis of boron-containing cholesterol derivatives for incorporation into unilamellar liposomes and evaluation as potential agents for BNCT. Tetrahedron 55:11177–11186CrossRefGoogle Scholar
  78. 78.
    Nakamura H, Ueno M, Lee JD et al (2007) Synthesis of dodecaborate-conjugated cholesterols for efficient boron delivery in neutron capture therapy. Tetrahedron Lett 48:3151–3154CrossRefGoogle Scholar
  79. 79.
    Thirumamagal BTS, Zhao XB, Bandyopadhyaya AK et al (2006) Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy. Bioconjug Chem 17:1141–1150PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceGakushuin UniversityToshima-ku, TokyoJapan
  2. 2.Graduate School of Agriculture and Life SciencesOsaka Prefecture UniversityOsakaJapan

Personalised recommendations