Accelerator-Based BNCT

Chapter

Abstract

There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of boron neutron capture therapy (BNCT). In this chapter, a variety of possible charged-particle-induced nuclear reactions and the characteristics of the resulting neutron spectra will be discussed along with corresponding particle accelerators as neutron-producing sources. Different past and present efforts to develop such facilities worldwide will be described including an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based (AB)-BNCT.

Keywords

Neutron Energy Linear Energy Transfer Boron Neutron Capture Therapy Relative Biological Effectiveness Neutron Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aleynik V et al (2011) BINP accelerator based epithermal neutron source. Appl Radiat Isot 69:1635–1638PubMedCrossRefGoogle Scholar
  2. 2.
    Allen DA, Beynon TD (1995) A design study for an accelerator-based epithermal neutron beam for BNCT. Phys Med Biol 40:807–821PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson OA, Alpen EL, Kwan JW et al (1994) ESQ-focused 2.5 MeV DC accelerator for BNCT. In: Proceedings of the 4th European particle accelerator conference. London, 1994, pp 2619–2621Google Scholar
  4. 4.
    Bayanov BF, Belov VP, Bender ED et al (1998) Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital. Nucl Instrum Methods Phys Res A 413:397–426CrossRefGoogle Scholar
  5. 5.
    Bayanov B, Burdakov A, Chudaev et al (2008) First neutron generation in the BINP accelerator based neutron source. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 514–517Google Scholar
  6. 6.
    Bleuel DL, Donahue RJ, Ludewigt BA et al (1998) Designing accelerator-based epithermal neutron beams for BNCT. Med Phys 25:1725–1734, and refs. thereinPubMedCrossRefGoogle Scholar
  7. 7.
    Blue T, Yanch J (2003) Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. J Neurooncol 62(1):19–31, and refs. thereinPubMedCrossRefGoogle Scholar
  8. 8.
    Burlon AA, Kreiner AJ (2008) A comparison between a TESQ accelerator and a reactor as a neutron source for BNCT. Nucl Instrum Methods Phys Res B 266:763–771 and Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 458–461Google Scholar
  9. 9.
    Burlon AA, Kreiner AJ, White SM et al (2001) In-phantom dosimetry using the 13  C(d,n)14  N reaction for BNCT. Med Phys 28:796–803PubMedCrossRefGoogle Scholar
  10. 10.
    Burlon AA, Kreiner AJ, Valda AA et al (2002) Optimization of a neutron production target and beam shaping assembly based on the 7Li(p,n)7Be reaction. In: Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 229–234Google Scholar
  11. 11.
    Burlon AA, Kreiner AJ et al (2004) An optimized neutron-beam shaping assembly for accelerator-based BNCT. Appl Radiat Isot 61:811PubMedCrossRefGoogle Scholar
  12. 12.
    Burlon AA, Kreiner AJ, Valda AA et al (2005) Optimization of a neutron production target and a beam shaping assembly based on the 7Li(p, n) reaction for BNCT. Nucl Instrum Methods Phys Res B 229:144–156CrossRefGoogle Scholar
  13. 13.
    Burlon AA, del V Roldan T, Kreiner AJ et al (2008) Nuclear reactions induced by deuterons and their applicability to skin tumor treatment through BNCT. Nucl Instrum Methods Phys Res B 266:4903–4910CrossRefGoogle Scholar
  14. 14.
    Capoulat ME, Minsky DM, Kreiner AJ (2011) Applicability of the 9Be(d,n)10B reaction to AB-BNCT skin and deep tumor treatment. Appl Radiat Isot 69:1684–1687PubMedCrossRefGoogle Scholar
  15. 15.
    Ceballos C et al (2011) Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL. Appl Radiat Isot 69:1660–1663PubMedCrossRefGoogle Scholar
  16. 16.
    Cleland MR (2006) Industrial applications of electron accelerators. CAS Proc. Yellow reports CERN 2006-012:383–416Google Scholar
  17. 17.
    Colonna N, Beaulieu L, Phair L et al (1999) Measurements of low-energy (d, n) reactions for BNCT. Med Phys 26(5):793–798PubMedCrossRefGoogle Scholar
  18. 18.
    Custodero S, Leung K, Mattioda F (2008) Feasibility study for the upgrade of a compact neutron generator for NCT application. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 450–453Google Scholar
  19. 19.
    Esposito J, Colautti P, Fabritsiev S et al (2008) Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 466–469Google Scholar
  20. 20.
    Forton E, Stichelbaut F, Cambriani A et al (2008) Overview of the IBA accelerator-based BNCT system. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 530–534Google Scholar
  21. 21.
    Friedman A, Grote DP, Haber I (1992) Particle simulation of heavy ion fusion beams. Phys Fluids B 4:2203CrossRefGoogle Scholar
  22. 22.
    Ganda F, Vujic J, Greenspan E et al (2008) Accelerator-driven sub-critical multiplier for BNCT. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 526–529Google Scholar
  23. 23.
    Ghani Z, Green S, Wojnecki et al (2008) BNCT beam monitoring, characterization and dosimetry. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 647–649 and refs. thereinGoogle Scholar
  24. 24.
    Green S (1998) Developments in accelerator based BNCT. Radiat Phys Chem 51(4–6):561–569CrossRefGoogle Scholar
  25. 25.
    Guzek J, Tapper U, McMurray W et al (1997) Characterization of the 9Be(d, n)10B reaction as a source of neutrons employing commercially available radiofrequency quadrupole (RFQ) linacs. In: Proceedings of SPIE, The International Society for Optical Engineering, 2867, pp 509–512Google Scholar
  26. 26.
    Halfon S, Paul M, Steinberg D et al (2008) High power accelerator-based BNC with a liquid Li target and new applications to treatment of infectious diseases. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 470–473 and references thereinGoogle Scholar
  27. 27.
    Halfon S et al (2011) High power liquid-lithium target prototype for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1654–1656PubMedCrossRefGoogle Scholar
  28. 28.
    Klinkowstein R, Shefer R, Yanch JC, et al (1997) Operation of a high current tandem electrostatic accelerator for boron neutron capture therapy. Advances in neutron capture therapy, Medicine and Physics, Elsevier Science B. V., Amsterdam, vol. 1, pp 522Google Scholar
  29. 29.
    Kobayashi T, Sakurai Y, Ono K (1998) Neutron irradiation systems for BNCT using accelerators and research reactors. Proc ECOMAP-98: 370–375Google Scholar
  30. 30.
    Kobayashi T, Bengua G, Tanaka K (2008) Neutrons for BNCT from the near threshold 7Li(p,n)7Be on a thick Li target. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 478–481 and refs. thereinGoogle Scholar
  31. 31.
    Kononov VN, Androsenko PA, Bohovko MV et al (1994) 7Li(p, n)7Be reaction near the threshold: the prospective neutron source for BNCT. In: Proceedings of the 1st international workshop on accelerator-based neutron sources for BNCT. vol 2, pp 477–483Google Scholar
  32. 32.
    Kononov et al (1996) Accelerator-based and intense directed neutron source for BNCT. In: Conference proceedings, 7th international symposium on neutron capture therapy. vol 1, pp 528–532Google Scholar
  33. 33.
    Kononov VN, Bohovko MV, Kononov OE, et al (2006) Neutron therapy facility based on high current proton accelerator KG-2,5. Proceedings of RuPAC, Novosibirsk, Russia, pp 118–119Google Scholar
  34. 34.
    Kreiner AJ, et al (eds) (2011a) Proceedings of the 14th international congress on neutron capture therapy. Appl Radiat Isot vol 69(12)Google Scholar
  35. 35.
    Kreiner AJ, Kwan JW, Burlon AA et al (2007) A tandem-electrostatic-quadrupole for accelerator-based BNCT. Nucl Instrum Methods B 261:751–754CrossRefGoogle Scholar
  36. 36.
    Kreiner AJ, Thatar Vento V, Levinas P et al (2008) Development of a Tandem-electrostatic-quadrupole accelerator facility for BNCT. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 482–485Google Scholar
  37. 37.
    Kreiner AJ et al (2011) Development of a tandem-electrostatic-quadrupole facility for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1672–1675PubMedCrossRefGoogle Scholar
  38. 38.
    Kwan JW, Ackerman GD, Chan CF et al (1995) Acceleration of 100 mA of H- in a single channel electrostatic quadrupole accelerator. Rev Sci Instrum 66(7):3864CrossRefGoogle Scholar
  39. 39.
    Lee CL, Zhou XL (1999) Thick target neutron yields for the 7Li(p, n)7Be reaction near threshold. Nucl Instrum Methods Phys Res B 152:1–11CrossRefGoogle Scholar
  40. 40.
    Lee CL and Zhou XL (1999b) An algorithm for computing thick target differential p-Li neutron yields near threshold. In: Duggan JL et al (eds) Proceedings of the 15th international conference on the applications of accelerators in research and industry, pp 227–230Google Scholar
  41. 41.
    Levinas P, Kreiner AJ, Henestroza E (2008) Transport of high-intensity proton and deuteron beams through a TESQ accelerator. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 411–414 and refs. thereinGoogle Scholar
  42. 42.
    Liskien H, Paulsen A (1975) Neutron production cross section and energies for the reactions 7Li(p, n)7Be and 7Li(p, n)7Be*. At Data Nucl Data Tables 15:57–84CrossRefGoogle Scholar
  43. 43.
    Ludewigt BA, Chu WT, Donahue RJ et al (1997) An epithermal neutron source for BNCT based on an ESQ-accelerator. LBNL report 40642Google Scholar
  44. 44.
    Minsky DM, Kreiner AJ, Valda AA (2011) AB-BNCT BSA based on the 7Li(p,n)7Be reaction optimization. Appl Radiat Isot 69:1668–1671PubMedCrossRefGoogle Scholar
  45. 45.
    Pisent A, Colautti P, Esposito J et al (2006) Progress on the accelerator based SPES-BNCT project at INFN Legnaro. J Phys Conf Ser 41:391–399. doi: 10.1088/1742-6596/41/1/043, and references thereinCrossRefGoogle Scholar
  46. 46.
    Porter EH (1980) The statistics of dose/cure relationships for irradiated tumours. Part I. Br J Radiol 53:210PubMedCrossRefGoogle Scholar
  47. 47.
    Tanaka H et al (2011) Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Appl Radiat Isot 69:1642–1645PubMedCrossRefGoogle Scholar
  48. 48.
    Taskaev S, Bayanov B, Belov V et al (2006) Development of Li target for AB-BNCT. Advances in NCT. Neutrino, Osaka, pp 292–295Google Scholar
  49. 49.
    Vento VT et al (2011) Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1649–1653PubMedCrossRefGoogle Scholar
  50. 50.
    Wheeler F, Nigg D, Capala J et al (1999) BNCT: implications of neutron beam and boron compound characteristics. Med Phys 26(7):1237–1244PubMedCrossRefGoogle Scholar
  51. 51.
    Yanch JC, Zhou X-I, Shefer RE et al (1992) Accelerator-based epithermal neutron beam design for NCT. Med Phys 19:709–721, and references thereinPubMedCrossRefGoogle Scholar
  52. 52.
    Ziegler JF (2008) The stopping and range of ions in matter. www.srim.org/SRIM/SRIM2008.htm. Accessed 2009
  53. 53.
    Zonta A et al (eds) (2008) BNCT: a new option against cancer. Proceedings of the 13th international congress on neutron capture therapy, Appl Radiat Isot. Florence, Italy, 67(7–8):s1–s380Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics DepartmentGerencia de Investigación y Aplicaciones, Centro Atomico ConstituyentesSan MartinArgentina
  2. 2.Escuela de Ciencia y TecnologíaUniversidad de San MartínSan MartínArgentina
  3. 3.CONICETBuenos AiresArgentina

Personalised recommendations