Landslide Inventories for Reliable Susceptibility Maps in Lower Austria

  • Helene PetschkoEmail author
  • Rainer Bell
  • Philip Leopold
  • Gerhard Heiss
  • Thomas Glade


Landslide inventories, their accuracy and the stored information are of major importance for landslide susceptibility modelling. Working on the scale of a province (Lower Austria with about 10,000 km2) challenges arise due to data availability and its spatial representation. Furthermore, previous studies on existing landslide inventories showed that only few inventories can be used for statistical susceptibility modelling. In this study two landslide inventories and their resulting susceptibility maps are compared: the Building Ground Register (BGR) of the Geological Survey of Lower Austria and an inventory that was mapped on the basis of a high resolution LiDAR DTM. This analysis was performed to estimate minimum requirements on landslide inventories to allow for deriving reliable susceptibility maps while minimizing mapping efforts. Therefore a consistent landslide inventory once from the BGR and once from the mapping was compiled. Furthermore, a logistic regression model was fitted with randomly selected points of each landslide inventory to compare the resulting maps and validation rates. The resulting landslide susceptibility maps show significant differences regarding their visual and statistical quality. We conclude that the application of randomly selected points in the main scarp of the mapped landslides gives satisfactory results.


Landslide inventory mapping Minimum requirements Archive data LiDAR DTM Lower Austria 



The authors thank several institutions and individuals for their support: the colleagues from the Geological Survey of Austria and from the Austrian Service for Torrent and Avalanche Control for providing inventory data; the Provincial Government of Lower Austria in particular the colleagues from the Geological Survey and the Department of Spatial Planning and Regional Policy for inventory data. Thanks to them also for supporting the MoNOE-project and for numerous fruitful discussions. Thanks also to the Department for Hydrology and Geoinformation for providing LiDAR and orthophoto data.

Finally, the authors are grateful for financial support of the Provincial Government of Lower Austria.


  1. Anders NS, Seijmonsbergen H (2008) Laser altimetry and terrain analysis – a revolution in geomorphology. GIM International. November 2008, pp 36–39Google Scholar
  2. Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7(6):637–650CrossRefGoogle Scholar
  3. Atkinson P, Jiskoot H, Massari R, Murray T (1998) Generalized linear modelling in geomorphology. Earth Surf Proc Land 23(13):1185–1195CrossRefGoogle Scholar
  4. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37(3):315–329CrossRefGoogle Scholar
  5. Bell R (2007) Lokale und regionale Gefahren- und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. Dissertation thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  6. Bell R, Petschko H, Röhrs M Dix A (in prep) Assessment of landslide age, human impact and landslide persistence using airborne laser scanning DTMs. Geografiska Annaler Series AGoogle Scholar
  7. Bell R, Glade T, Granica K, Heiss G, Leopold P, Petschko H, Pomaroli G, Proske H, Schweigl J (this volume) Landslide susceptibility maps for spatial planning in Lower Austria. In: Proceedings of the 2nd world landslide forum, Rome, 3–7 Oct 2011Google Scholar
  8. Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109(3–4):132–147CrossRefGoogle Scholar
  9. Brardinoni F, Slaymaker O, Hassan MA (2003) Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology 54(3–4):179–196CrossRefGoogle Scholar
  10. Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862CrossRefGoogle Scholar
  11. Chigira M, Duan F, Yagi H, Furuya T (2004) Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides 1(3):203–209CrossRefGoogle Scholar
  12. Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472CrossRefGoogle Scholar
  13. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. National Academy, Washington, D.C., pp 36–75Google Scholar
  14. Duman TY, Çan T, Emre Ö, Keçer M, Dogan A, Ates S, Durmaz S (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77(1–2):99–114CrossRefGoogle Scholar
  15. Glade T (1996) The temporal and spatial occurrence of landslide-triggering rainstorms in New Zealand. Heidelberger Geographische Arbeiten 104:237–250Google Scholar
  16. Glade T, Frances F, Albini P (eds) (2001) The use of historical data in natural hazard assessments. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  17. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manage 18(4):623–633CrossRefGoogle Scholar
  18. Leopold P, Heiss G, Petschko H, Bell R, Glade T (this volume) Susceptibility maps for landslides using different modelling approaches. In: Proceedings of the 2nd world landslide forum. Rome, 3–7 Oct 2011Google Scholar
  19. Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116(1–2):24–36CrossRefGoogle Scholar
  20. Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F (2011) Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens Environ 115(7):1743–1757CrossRefGoogle Scholar
  21. Petley D (2010) Landslide hazards. In: Alcántara-Ayala I, Goudie AS (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, NY, pp 63–75CrossRefGoogle Scholar
  22. Petschko H, Glade T, Bell R, Schweigl J, Pomaroli G (2010) Landslide inventories for regional early warning systems. Malet JP, Glade T, Casagli N (eds) In: Proceedings of the international conference “Mountain risks: bringing science to society”. CERG Editions, StrasbourgGoogle Scholar
  23. Pomaroli G, Bell R, Glade T, Heiss G, Leopold P, Petschko H, Proske H, Schweigl J (2011) Darstellung der Gefährdung durch gravitative Massenbewegungen im Bundesland Niederösterreich als Grundlage der Raumplanung. Skolaut C (ed) Wildbach- und Lawinenverbau - Zeitschrift für Wildbach-, Lawinen-, Erosions- und Steinschlagschutz. Verein der Diplomingenieure der Wildbach und Lawinenverbauung Österreichs, Villach, pp 198–212Google Scholar
  24. Schulz WH (2004) Landslides mapped using LIDAR imagery, Seattle, Washington. US Geological Survey Open-File Report, 1396(11)Google Scholar
  25. Schwenk H (1992) Massenbewegungen in Niederösterreich 1953–1990. Jahrbuch der Geologischen Bundesanstalt. Geologische Bundesanstalt, Wien, pp 597–660Google Scholar
  26. Van Asselen S, Seijmonsbergen AC (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78(3–4):309–320CrossRefGoogle Scholar
  27. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32(5):754–769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Helene Petschko
    • 1
    Email author
  • Rainer Bell
    • 1
  • Philip Leopold
    • 2
  • Gerhard Heiss
    • 2
  • Thomas Glade
    • 1
  1. 1.Department of Geography and Regional ResearchUniversity of ViennaWien, ViennaAustria
  2. 2.Health and Environment Department, Environmental Resources and TechnologiesAIT – Austrian Institute of Technology GmbHTullnAustria

Personalised recommendations