Advertisement

Geotechnical Features of the Volcanic Rocks Related to the Arteara Rock Avalanche in Gran Canaria (Canary Islands, Spain)

  • Martín Jesús Rodríguez-Peces
  • Jorge Yepes Temiño
  • Esther Martín-Nicolau
Chapter

Abstract

The Arteara rock avalanche is developed in the Fataga Group which is related to the first volcanic stage in the Gran Canaria Island (8.6–13.3 Ma). The materials of the avalanche are mainly phonolitic ignimbrites and lava flows. We have investigated the geotechnical quality of the five lithotypes distinguished in the area: (a) phonolitic lava, (b) phonolitic agglomerate breccia, (c) reddish non-welded ignimbrite, (d) welded fiamme-bearing ignimbrite, and (e) pumice tuff with lithics. The weak geotechnical properties of the reddish non-welded ignimbrite, the pumice tuff with lithics and the agglomerate breccia, and their location at the middle of the slope suggest that these lithotypes can be regarded as potential sliding surfaces of the avalanche. The geomechanical features of the volcanic rocks found in this study could be very useful for future studies concerning the modelling of the mechanism of failure and run out of the Arteara rock avalanche.

Keywords

Canary Islands Geotechnical parameter Gran Canaria Point load test Rock avalanche Rock mechanics Schmidt hammer 

References

  1. AENOR (1994) UNE 103-301/94. Determination of a soil density. Method of the hydrostatic balance. Asociación Española de Normalización y Certificación, Madrid, 2pGoogle Scholar
  2. Aggistalis G, Alivizatos A, Stamoulis D, Stournaras G (1996) Correlating uniaxial compressive strength with Schmidt hammer rebound number, point load index, Young’s modulus, and mineralogy of gabbros and basalts (Northern Greece). Bull Eng Geol 54:3–11CrossRefGoogle Scholar
  3. ASTM (2000) Standard test method for determination of the point load strength index of rock. American Society for Testing and Materials. ASTM 04.08, D5731-02Google Scholar
  4. Aydin A (2009) ISRM suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int J Rock Mech Min 46:627–634CrossRefGoogle Scholar
  5. Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14CrossRefGoogle Scholar
  6. Barton N (1981) Shear strength invetigations for surface mining. In: Bowner CO (ed) Stability in surface mining, vol 3. In: Third international conference, Vancouver, pp 171–192Google Scholar
  7. Beverly BE, Schoenwolf DA, Brierly GS (1979) Correlations of rock index values with engineering properties and the classification of intact rock. Brierley Associates, Washington, DCGoogle Scholar
  8. Bogaard P van den, Schmincke H-U (1998) Chronostratigraphy of Gran Canaria. In: Weaver PPE, Schmincke H-U, Firth JV, Duffield W (eds) Proceedings of the ODP, Sci results, College Station, TX (Ocean drilling program), vol 157, pp 127–140Google Scholar
  9. Broch E, Franklin JA (1972) Point-load strength test. Int J Rock Mech Min Sci 9(6):669–697CrossRefGoogle Scholar
  10. Chau KT, Wong RHC (1996) Uniaxial compressive strength and point load strength. Int J Rock Mech Min Sci 33:183–188Google Scholar
  11. D’Andrea DV, Fisher RL, Fogelson DE (1964) Prediction of compression strength from other rock properties. Colo Sch Mines Q 59:623–640Google Scholar
  12. del Potro R, Hürlimann M (2008) Geotechnical classification and characterisation of materials for stability analyses of large volcanic slopes. Eng Geol 98:1–17CrossRefGoogle Scholar
  13. del Potro R, Hürlimann M (2009) A comparison of different indirect techniques to evaluate volcanic intact rock strength. Rock Mech Rock Eng 42:931–938CrossRefGoogle Scholar
  14. Dinçer I, Acar A, Çobanoglu I, Uras Y (2004) Correlation between Schmidt hardness, uniaxial compressive strength and Young’s modulus for andesites, basalts and tuffs. Bull Eng Geol Environ 63:141–148CrossRefGoogle Scholar
  15. Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38(4):329–343CrossRefGoogle Scholar
  16. González de Vallejo LI, Hijazo T, Ferrer M (2008) Engineering geological properties of the volcanic rocks and soils of the Canary Islands. Soils Rocks 31(1):3–13Google Scholar
  17. ISRM (1985) ISRM suggested methods. Suggested method for determining point-load strength. Int J Rock Mech Min Sci 22:53–60CrossRefGoogle Scholar
  18. Kahraman S, Gunaydin O (2009) The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull Eng Geol Environ 68:345–353CrossRefGoogle Scholar
  19. Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589CrossRefGoogle Scholar
  20. Kiliç A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67:237–244CrossRefGoogle Scholar
  21. McDougall I, Schmincke HU (1976) Geochronology of Gran Canaria (Canary Islands): age of shield building volcanism and other magmatic phases. Bull Volcanol 40(1):57–77CrossRefGoogle Scholar
  22. Quane SL, Russel JK (2003) Rock strength as a metric of welding intensity in pyroclastic deposits. Eur J Mineral 15:855–864CrossRefGoogle Scholar
  23. Read JRL, Thornten PN, Regan WM (1980) A rational approach to the point load test. In: Proceedings of 3rd Australian-New Zealand geomechanics conference, vol 2. New Zealand Institution of Engineers, Wellington, pp 35–39Google Scholar
  24. Rodríguez-Losada JA, Hernández-Gutiérrez LE, Lomoschitz Mora-Figueroa A (2007) Geotechnical features of the welded ignimbrites of the Canary Islands. In: Malheiro AM, Nunes JC (eds) Volcanic rocks. Taylor & Francis, London, pp 29–33. ISBN 978-0-415-45140-6CrossRefGoogle Scholar
  25. Rodríguez-Losada JA, Hernández-Gutiérrez LE, Olalla C, Perucho A, Serrano A, Eff-Darwich A (2009) Geomechanical parameters of intact rocks and rock masses from the Canary Islands: implications on their flank stability. J Volcanol Geotherm Res 182:67–75CrossRefGoogle Scholar
  26. Schmincke HU, Sumita M (2010) Geological evolution of the Canary Islands. Görres Verlag, Koblenz, 188 ppGoogle Scholar
  27. Xu S, Grasso P, Mahtab A (1990) Use of Schmidt hammer for estimating mechanical properties of weak rock. In: 6th international IAEG congress. Balkema, Rotterdam, pp 511–519Google Scholar
  28. Yasar E, Erdogan Y (2004) Estimation of rock physicomechanical properties using hardness methods. Eng Geol 71:281–288CrossRefGoogle Scholar
  29. Yepes J, Lomoschitz A (2008) Los depósitos de ladera del barranco de Fataga (Gran Canaria). Geo-Temas 10:767–770Google Scholar
  30. Yepes J, Lomoschitz A (2009) Caracterización geomorfológica del alud de rocas de Arteara, Gran Canaria. In: Proceedings of VII Simposio Nacional sobre Taludes y Laderas Inestables, 27–30 Oct 2009. Barcelona, 13ppGoogle Scholar
  31. Yepes J, Lomoschitz A (2010) Geomorphology of the Arteara Holocene rock-avalanche deposit, Gran Canaria Island, vol 12, Geophysical research abstracts. EGU General Assembly 2010, Vienna, pp 12017–12018Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martín Jesús Rodríguez-Peces
    • 1
  • Jorge Yepes Temiño
    • 2
  • Esther Martín-Nicolau
    • 1
  1. 1.Department of GeodynamicsUniversity Complutense of Madrid. Ciudad UniversitariaMadridSpain
  2. 2.Department of Civil EngineeringUniversity of Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations