Generation of Synthetic Image Datasets for Time-Lapse Fluorescence Microscopy

  • David Svoboda
  • Vladimír Ulman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

In the field of biomedical image analysis, motion tracking and segmentation algorithms are important tools for time-resolved analysis of cell characteristics, events, and tracking. There are many algorithms in everyday use. Nevertheless, most of them is not properly validated as the ground truth (GT), which is a very important tool for the verification of image processing algorithms, is not naturally available. Many algorithms in this field of study are, therefore, validated only manually by an human expert. This is usually difficult, cumbersome and time consuming task, especially when single 3D image or even 3D image sequence is considered.

In this paper, we have proposed a technique that generates time-lapse sequences of fully 3D synthetic image datasets. It includes generating shape, structure, and also motion of selected biological objects. The corresponding GT data is generated as well. The technique is focused on the generation of synthetic objects at various scales. Such datasets can be then processed by selected segmentation or motion tracking algorithms. The results can be compared with the GT and the quality of the applied algorithm can be measured.

Keywords

simulation optical flow 3D image sequences fluorescence optical microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Hunter, W.C., Douglas, A., Muijtjens, A.M., Reneman, R.S.: Description of the deformation of the left ventricle by a kinematic model. Journal of Biomechanics 25(10), 1119–1127 (1992)CrossRefGoogle Scholar
  2. 2.
    Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imaging 25(11), 1410–1416 (2006)CrossRefGoogle Scholar
  3. 3.
    Baddeley, D., Weiland, Y., Batram, C., Birk, U., Cremer, C.: Model based precision structural measurements on barely resolved objects. Journal of Microscopy 237(1), 70–78 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: paramet- ric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)CrossRefGoogle Scholar
  5. 5.
    Dufour, A., Shinin, V., Tajbakhsh, S., Guillen-Aghion, N., Olivo-Marin, J.C., Zimmer, C.: Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Transactions on Image Processing 14(9), 1396–1410 (2005)CrossRefGoogle Scholar
  6. 6.
    Flores-Tapia, D., Thomas, G., Sabouni, A., Noghanian, S., Pistorius, S.: Breast tumor microwave simulator based on a radar signal model. In: International Symposium on Signal Processing and Information Technology, pp. 17–22 (2006)Google Scholar
  7. 7.
    Gerencser, A.A., Nicholls, D.G.: Measurement of instantaneous velocity vectors of organelle transport: Mitochondrial transport and bioenergetics in hippocampal neurons. Biophysical Journal 95, 3070–3099 (2008)Google Scholar
  8. 8.
    Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRefGoogle Scholar
  9. 9.
    Grigoryan, A.M., Hostetter, G., Kallioniemi, O., Dougherty, E.R.: Simulation toolbox for 3D-FISH spot-counting algorithms. Real-Time Imaging 8(3), 203–212 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Kratky, O., Porod, G.: Röntgenuntersuchung Gelöster Fadenmoleküle. Recueil des Travaux Chimiques des Pays-Bas-J. of the Royal Netherlands Chemical Society 68(12), 1106–1122 (1949)CrossRefGoogle Scholar
  11. 11.
    Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging 26(7), 1010–1016 (2007)CrossRefGoogle Scholar
  12. 12.
    Lin, T., Barron, J.L.: Image reconstruction error for optical flow. In: Vision Interface, pp. 73–80 (1994)Google Scholar
  13. 13.
    Lockett, S.J., Sudar, D., Thompson, C.T., Pinkel, D., Gray, J.W.: Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry 31, 275–286 (1998)CrossRefGoogle Scholar
  14. 14.
    Ma, Y., Kamber, M., Evans, A.C.: 3D simulation of PET brain images using segmented MRI data and positron tomograph characteristics. In: Computerized Medical Imaging and Graphics, vol. 17, pp. 365–371 (1993)Google Scholar
  15. 15.
    Malm, P., Brun, A., Bengtsson, E.: Papsynth: simulated bright-field images of cervical smears. In: Proceedings of the 2010 IEEE International Conference on Biomedical Imaging: From Nano to Macro, ISBI 2010, pp. 117–120. IEEE Press (2010)Google Scholar
  16. 16.
    Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M., Aten, J.A.: Largest contour segmentation: A tool for the localization of spots in confocal images. Cytometry 23, 15–21 (1996)CrossRefGoogle Scholar
  17. 17.
    Matov, A., Edvall, M.M., Yang, G., Danuser, G.: Optimal-flow minimum-cost correspondence assignment in particle flow tracking. Computer Vision and Image Understanding 115(4), 531–540 (2011)CrossRefGoogle Scholar
  18. 18.
    Moore, J., Drangova, M., Wierzbicki, M., Barron, J.L., Peters, T.: A High Resolution Dynamic Heart Model Based on Averaged MRI Data. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 549–555. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Okamoto, K., Nishio, S., Saga, T., Kobayashi, T.: Standard images for particle-image velocimetry. Measurement Science and Technology 11(6), 685 (2000)CrossRefGoogle Scholar
  20. 20.
    Rabben, S.I., Haukanes, A.L., Irgens, F.: A kinematic model for simulating physiological left ventricular deformation patterns – a tool for evaluation of myocardial strain imaging. In: IEEE Symposium on Ultrasonics, vol. 1, pp. 134–137 (2003) ISBN: 0-7803-7922-5Google Scholar
  21. 21.
    Rexilius, J., Hahn, H.K., Bourquain, H., Peitgen, H.O.: Ground Truth in MS Lesion Volumetry – A Phantom Study. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 546–553. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Schlaikjer, M., Torp-Pedersen, S., Jensen, J., Stetson, P.: Tissue motion in blood velocity estimation and its simulation. In: Proc. 1998 IEEE Ultrasonics, Symposium, p. 1495 (1998)Google Scholar
  23. 23.
    Schlaikjer, M., Torp-Pedersen, S., Jensen, J.A.: Simulation of RF data with tissue motion for optimizing stationary echo canceling filters. Ultrasonics 41, 415–419 (2003)CrossRefGoogle Scholar
  24. 24.
    Solórzano, C.O.d., Rodriguez, E.G., Jones, A., Pinkel, D., Gray, J.W., Sudar, D., Lockett, S.J.: Segmentation of confocal microscope images of cell nuclei in thick tissue sections. Journal of Microscopy 193, 212–226 (1999)CrossRefGoogle Scholar
  25. 25.
    Svoboda, D., Homola, O., Stejskal, S.: Generation of 3D Digital Phantoms of Colon Tissue. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part II. LNCS, vol. 6754, pp. 31–39. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Svoboda, D., Kašík, M., Maška, M., Hubený, J., Stejskal, S., Zimmermann, M.: On Simulating 3D Fluorescent Microscope Images. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 309–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3d image cytometry. Cytometry part A 75A(6), 494–509 (2009)CrossRefGoogle Scholar
  28. 28.
    Tavakoli, V., Sahba, N., Ahmadian, A., Alirezaie, J.: An evaluation of different optical flow techniques for myocardial motion analysis in B-Mode echocardiography images. In: 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, IFMBE Proceedings, vol. 21, pp. 506–510. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Tofts, P., Barker, G., Filippi, M., Gawne-Cain, M., Lai, M.: An oblique cylinder contrast-adjusted (OCCA) phantom to measure the accuracy of MRI brain lesion volume estimation schemes in multiple sclerosis. Magnetic Resonance Imaging 15(10), 183–192 (1997)CrossRefGoogle Scholar
  30. 30.
    Ulman, V., Hubený, J.: Pseudo-real Image Sequence Generator for Optical Flow Computations. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 976–985. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Ulman, V.: Fast Anisotropic Filtering and Performance Evaluation Tool for Optical Flow in Biomedical Image Analysis. Ph.D. thesis, Masaryk University (2011)Google Scholar
  32. 32.
    Waks, E., Prince, J.L., Douglas, A.S.: Cardiac motion simulator for tagged MRI. In: MMBIA 1996: Proceedings of the 1996 Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 1996), p. 182. IEEE Computer Society, Washington, DC (1996)Google Scholar
  33. 33.
    Xiong, W., Wang, Y., Ong, S.H., Lim, J.H., Jiang, L.: Learning cell geometry models for cell image simulation: An unbiased approach. In: ICIP, pp. 1897–1900 (2010)Google Scholar
  34. 34.
    Zhao, T., Murphy, R.F.: Automated learning of generative models for subcellular location: Building blocks for systems biology. Cytometry Part A 71A(12), 978–990 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Svoboda
    • 1
  • Vladimír Ulman
    • 1
  1. 1.Centre for Biomedical Image AnalysisMasaryk UniversityBrnoCzech Republic

Personalised recommendations