Detection of Neovascularization for Screening of Proliferative Diabetic Retinopathy

  • M. Usman Akram
  • Anam Tariq
  • Shoab A. Khan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7325)

Abstract

Diabetic retinopathy is one of the leading cause of blindness caused due to increase of insulin in blood. It is a progressive disease and needs an early detection and treatment. Proliferative diabetic retinopathy is an advance stage and causes severe visual impairments. Early and accurate detection of proliferative diabetic retinopathy is very important and crucial for protection of patient’s vision. Automated systems for screening of proliferative diabetic retinopathy should accurately detect the blood vessels to identify vascular abnormalities. In this paper, we present a method for screening of proliferative diabetic retinopathy using blood vessel structure. The method extracts the vascular pattern by enhancing the blood vessels using wavelet response and segmenting the blood vessels using a multilayered thresholding technique. It uses a Gaussian mixture model based classifier for detection of neovascularization. The proposed method is evaluated using publicly available retinal image databases and results show that the proposed system identifies the vascular abnormalities with high accuracy.

Keywords

Diabetic Retinopathy Gaussian Mixture Model Retinal Image Proliferative Diabetic Retinopathy Gabor Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein, R., Klein, B.E.K., Moss, S.E.: Visual impairment in diabetes. Ophthalmology 91, 1–9 (1984)Google Scholar
  2. 2.
    Sjolie, A.K., Stephenson, J., Aldington, S., Kohner, E., Janka, H., Stevens, L., Fuller, J.: Retinopathy and vision loss in insulin-dependent diabetes in Europe. Ophthalmology 104, 252–260 (1997)Google Scholar
  3. 3.
    Effective Health Care - Complications of diabetes: Screening for retinopathy and Management of foot ulcers. Royal Society of Medicine Press 5(4) (1999)Google Scholar
  4. 4.
    Ronald, P.C., Peng, T.K.: A textbook of clinical ophthalmology: a practical guide to disorders of the eyes and their management, 3rd edn. World Scientific Publishing Company, Singapore (2003)Google Scholar
  5. 5.
    Kohner, E.M., Aldington, S.J., Stratton, I.M., Manley, S.E., Holman, R.R., Matthews, D.R.: United Kingdom Prospective Diabetes Study, 30: diabetic retinopathy at diagnosis of noninsulin-dependent diabetes mellitus and associated risk factors. Arch. Ophthalmol. 116, 297–303 (1998)Google Scholar
  6. 6.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)CrossRefGoogle Scholar
  7. 7.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  8. 8.
    Yen, G.G., Leong, W.-F.: A sorting system for hierarchical grading of diabetic fundus images: A preliminary study. IEEE Trans. Inf. Technol. Biomed. 12(1), 118–130 (2008)CrossRefGoogle Scholar
  9. 9.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3), 263–269 (1989)CrossRefGoogle Scholar
  10. 10.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19(3), 203–210 (2000)CrossRefGoogle Scholar
  11. 11.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  12. 12.
    Jiang, X., Mojon, D.: Adaptive local thresholding by verification based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)CrossRefGoogle Scholar
  13. 13.
    Goatman, K.A., Fleming, A.D., Philip, S., Williams, G.J., Olson, J.A., Sharp, P.F.: Detection of New Vessels on the Optic Disc Using Retinal Photographs. IEEE Transactions on Medical Imaging 30(4), 972–979 (2011)CrossRefGoogle Scholar
  14. 14.
    Agurto, C., Murray, V., Barriga, E., Murillo, S., Pattichis, M., Davis, H., Russell, S., Abrámoff, M., Soliz, P.: Multiscale AM-FM Methods for Diabetic Retinopathy Lesion Detection. IEEE Transactions on Medical Imaging 29(2), 502–512 (2010)CrossRefGoogle Scholar
  15. 15.
    Antoine, J.P., Carette, P., Murenzi, R., Piette, B.: Image analysis with two-dimensional continuous wavelet transform. Signal Processing 31(3), 241–272 (1993)MATHCrossRefGoogle Scholar
  16. 16.
    Akram, M.U., Khan, S.A.: Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Engineering with Computers (2011), doi:10.1007/s00366-011-0253-7Google Scholar
  17. 17.
    Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Prentice Hall (2002)Google Scholar
  18. 18.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 1st edn. Academic, Burlington (1999)Google Scholar
  19. 19.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)MATHGoogle Scholar
  20. 20.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms. Technical report (2005)Google Scholar
  21. 21.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical report (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Usman Akram
    • 1
  • Anam Tariq
    • 1
  • Shoab A. Khan
    • 1
  1. 1.Department of Computer Engineering, College of Electrical & Mechanical EngineeringNational University of Sciences & TechnologyPakistan

Personalised recommendations