On the Detection of Unknown Locally Repeating Patterns in Images

  • Diogo Pratas
  • Armando J. Pinho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7324)

Abstract

Detecting unknown repeated patterns that appear multiple times in a digital image is a great challenge. We have addressed this problem in a recent work and we have shown that, using a compression based approach, it is possible to find exact repetitions. In this work, we continue this study, introducing a procedure for detecting unknown repeated patterns that occur in a close vicinity. We use finite-context modelling to pinpoint the possible locations of the repetitions, by exploring the connection between lossless image compression and image complexity. Since repetitions are associated to low complexity regions, the repeating patterns are revealed and easily detected. The experimental results show that the proposed approach provides increased ability to eliminate false positives.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice Hall (1990)Google Scholar
  2. 2.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13, 547–569 (1966)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dix, T.I., Powell, D.R., Allison, L., Bernal, J., Jaeger, S., Stern, L.: Comparative analysis of long DNA sequences by per element information content using different contexts. BMC Bioinformatics 8(suppl. 2), S10 (2007)Google Scholar
  4. 4.
    Gondra, I., Heisterkamp, D.R.: Content-based image retrieval with the normalized information distance. Computer Vision and Image Understanding 111, 219–228 (2008)CrossRefGoogle Scholar
  5. 5.
    Gordon, G.: Multi-dimensional linguistic complexity. Journal of Biomolecular Structure & Dynamics 20(6), 747–750 (2003)CrossRefGoogle Scholar
  6. 6.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1(1), 1–7 (1965)MathSciNetGoogle Scholar
  7. 7.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. on Information Theory 22(1), 75–81 (1976)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Trans. on Information Theory 50(12), 3250–3264 (2004)CrossRefGoogle Scholar
  9. 9.
    Mallet, A., Gueguen, L., Datcu, M.: Complexity based image artifact detection. In: Proc. of the Data Compression Conf., DCC-2008, Snowbird, Utah, p. 534 (2008)Google Scholar
  10. 10.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)MATHCrossRefGoogle Scholar
  11. 11.
    Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7(1), 1–22 (1964)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Solomonoff, R.J.: A formal theory of inductive inference. Part II. Information and Control 7(2), 224–254 (1964)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Tran, N.: The normalized compression distance and image distinguishability. In: Human Vision and Electronic Imaging XII — Proc. of the SPIE, p. 64921D (January 2007)Google Scholar
  14. 14.
    Wallace, C.S., Boulton, D.M.: An information measure for classification. The Computer Journal 11(2), 185–194 (1968)MATHGoogle Scholar
  15. 15.
    Pinho, A.J., Ferreira, P.J.S.G.: Finding unknown repeated patterns in images. In: Proc. of the European Signal Processing Conference, EUSIPCO 2011, Barcelona, Spain, pp. 584–588 (August 2011)Google Scholar
  16. 16.
    Max, J.: Quantizing for minimum distortion. IRE Trans. on Information Theory 6, 7–12 (1960)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. on Information Theory 28(2), 129–137 (1982)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diogo Pratas
    • 1
  • Armando J. Pinho
    • 1
  1. 1.Signal Processing Laboratory, IEETA/DETIUniversity of AveiroAveiroPortugal

Personalised recommendations