Private Computation of Spatial and Temporal Power Consumption with Smart Meters

  • Zekeriya Erkin
  • Gene Tsudik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7341)


Smart metering of utility consumption is rapidly becoming reality for multitudes of people and households. It promises real-time measurement and adjustment of power demand which is expected to result in lower overall energy use and better load balancing. On the other hand, finely granular measurements reported by smart meters can lead to starkly increased exposure of sensitive information, including all kinds of personal attributes and activities. Reconciling smart metering’s benefits with privacy concerns is a major challenge.

In this paper we explore some simple and relatively efficient cryptographic privacy techniques that allow spatial (group-wide) aggregation of smart meter measurements. We also consider temporal aggregation of multiple measurements for a single smart meter. While our work is certainly not the first to tackle this topic, we believe that proposed techniques are appealing due to their simplicity, few assumptions and peer-based nature, i.e., no need for any on-line aggregators or trusted third parties.


Wireless Sensor Network Total Consumption Secret Sharing Aggregate Consumption Homomorphic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ács, G., Castelluccia, C.: I Have a DREAM (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Anderson, R., Fuloria, S.: On the security economics of electricity metering. In: The 9th Workshop on the Economics of Information Security (2010)Google Scholar
  3. 3.
    Bianchi, T., Piva, A., Barni, M.: Composite signal representation for fast and storage-efficient processing of encrypted signals. IEEE Transactions on Information Forensics and Security 5(1), 180–187 (2010)CrossRefGoogle Scholar
  4. 4.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen. Netw. 5, 20:1–20:36 (2009)Google Scholar
  6. 6.
    Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. TOSN 5(3) (2009)Google Scholar
  7. 7.
    Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data in wireless sensor networks. In: Proceedings of the The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 109–117. IEEE Computer Society, Washington, DC (2005)CrossRefGoogle Scholar
  8. 8.
    Domingo-Ferrer, J.: A Provably Secure Additive and Multiplicative Privacy Homomorphism. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 471–483. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Doraswamy, N., Harkins, D.: IPSec: The New Security Standard for the Internet, Intranets, and Virtual Private Networks. Prentice Hall PTR, Upper Saddle River (1999)Google Scholar
  10. 10.
    Fine, J.: Malfunctioning smart meters demonstrate their intelligence (May 16, 2011),
  11. 11.
    Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP Journal on Information Security (2007)Google Scholar
  12. 12.
    Garcia, F.D., Jacobs, B.: Privacy-Friendly Energy-Metering via Homomorphic Encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, 1st edn., vol. 2. Cambridge University Press (May 2004) ISBN 0-521-83084-2Google Scholar
  14. 14.
    Danezis, G., Kohlweiss, M., Rial, A.: Differentially Private Billing with Rebates. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 148–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-Friendly Aggregation for the Smart-Grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Molina-Markham, A., Danezis, G., Fu, K., Shenoy, P.J., Irwin, D.E.: Designing privacy-preserving smart meters with low-cost microcontrollers. IACR Cryptology ePrint Archive 2011, 544 (2011)Google Scholar
  17. 17.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Peter, S., Piotrowski, K., Langendoerfer, P.: On concealed data aggregation for wireless sensor networks. In: 4th IEEE Consumer Communications and Networking Conferences (2007)Google Scholar
  19. 19.
    Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society, WPES 2011, pp. 49–60. ACM, New York (2011)CrossRefGoogle Scholar
  20. 20.
    Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings of 18th Annual Network and Distributed System Security Symposium (NDSS 2011) (February 2011)Google Scholar
  21. 21.
    Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U., Lemma, A.N.: A secure multidimensional point inclusion protocol. In: ACM Workshop on Multimedia and Security, pp. 109–120 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zekeriya Erkin
    • 1
  • Gene Tsudik
    • 2
  1. 1.Information Security and Privacy LabDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations