Quantitative Description of the Sludge Granulation Process

  • Bing-Jie Ni
Chapter
Part of the Springer Theses book series (Springer Theses, volume 131)

Abstract

The granulation process of activated sludge, taking the sludge in two sequencing batch reactors (SBRs) respectively fed with soybean-processing and fatty-acids-rich wastewaters as an example, is quantitatively described. Based on a mixed-culture biofilm model and a simultaneous storage and growth model, a new model incorporating microbial growth, oxygen transfer, substrate diffusion, increased granule size, and biomass detachment is formulated to describe the granulation process of activated sludge. Parameter estimation results of no evident cross-correlation and low 95 % confidence intervals indicate a good identification of the obtained parameter values. The model evaluation results of three different case studies demonstrate that the developed model is applicable to describing the aerobic sludge granulation process appropriately. With this model, the aerobic granulation process in terms of mean radius profiles could be quantitatively characterized.

Keywords

Chemical Oxygen Demand Oxygen Uptake Rate Granular Sludge Granule Size Aerobic Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. APHA: Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington (1995)Google Scholar
  2. Avcioglu, E., Karahan, G., Orhon, D.: Estimation of stoichiometric and kinetic coefficients of ASM3 under aerobic and anoxic conditions via respirometry. Water Sci. Technol. 48, 185–194 (2003)Google Scholar
  3. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A., Heijnen, J.J.: Aerobic granulation in a sequencing batch reactor. Water Res. 33, 2283–2290 (1999)CrossRefGoogle Scholar
  4. de Kreuk, M.K., Picioreanu, C., Hosseini, M., Xavier, J.B., van Loosdrecht, M.C.M.: Kinetic model of a granular sludge SBR—Influences on nutrient removal. Biotechnol. Bioeng. 97, 801–815 (2007)CrossRefGoogle Scholar
  5. de Kreuk, M.K., Heijnen, J.J., van Loosdrecht, M.C.M.: Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng. 90, 761–769 (2005)CrossRefGoogle Scholar
  6. Gujer, W., Henze, M., Mino, T., van Loosdrecht, M.C.M.: Activated sludge model NO. 3. Water Sci. Technol. 39, 183–193 (1999)Google Scholar
  7. Henze, M., Grady, C.P.L. Jr, Gujer, W., Marais, G.V.R., Matsuo, T.: Activated sludge model No. 1. Scientific and Technical Report No. 1. IAWPRC, London (1987)Google Scholar
  8. Jiang, H.L., Tay, J.H., Tay, S.T.L.: Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett. Appl. Microbiol. 35, 439–445 (2002)CrossRefGoogle Scholar
  9. Karahan, O., van Loosdrecht, M.C.M., Orhon, D.: Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth. Biotechnol. Bioeng. 94, 43–53 (2006)CrossRefGoogle Scholar
  10. Morgenroth, E., Sherden, T., van Loosdrecht, M.C.M., Heijnen, J.J., Wilderer, P.A.: Aerobic granular sludge in a sequencing batch reactor. Water Res. 31, 3191–3194 (1997)CrossRefGoogle Scholar
  11. Mu, Y., Yu, H.Q.: Biological hydrogen production in a UASB reactor with granules I: physicochemical characteristics of hydrogen-producing granules. Biotechnol. Bioeng. 94, 980–987 (2006)CrossRefGoogle Scholar
  12. Ni, B.J., Yu, H.Q., Sun, Y.J.: Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Res. 42, 1583–1594 (2008)CrossRefGoogle Scholar
  13. Ni, B.J., Sheng, G.P., Li, X.Y., Yu, H.Q.: Quantitative simulation of the granulation process of activated sludge for wastewater treatment. Ind. Eng. Chem. Res. 49, 2864–2873 (2010)CrossRefGoogle Scholar
  14. Nicolella, C., van Loosdrecht, M.C.M., Heijnen, J.J.: Mass transfer and reaction in a biofilm airlift suspension reactor. Chem. Eng. Sci. 53, 2743–2753 (1998)CrossRefGoogle Scholar
  15. Rauch, W., Vanhooren, H., Vanrolleghem, P.A.: A simplified mixed-culture biofilm model. Water Res. 33, 2148–2162 (1999)CrossRefGoogle Scholar
  16. Reichert, P.: Aquasim 2.0-User Manual, Computer Program for the Identification and Simulation of Aquatic Systems. EAWAG, Dübendorf (ISBN 3 906484 16 5) (1998)Google Scholar
  17. Su, K.Z., Yu, H.Q.: Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ. Sci. Technol. 39, 2818–2827 (2005)CrossRefGoogle Scholar
  18. Tay, J.H., Liu, Q.S., Liu, Y.: The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotechnol. 57, 227–233 (2001)CrossRefGoogle Scholar
  19. Wanner, O., Reichert, P.: Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng. 49, 172–184 (1996)CrossRefGoogle Scholar
  20. Wu, M.M., Criddle, C.S., Hickey, R.F.: Mass transfer and temperature effects on substrate utilization in brewery granules. Biotechnol. Bioeng. 46, 465–475 (1995)CrossRefGoogle Scholar
  21. Yang, S.F., Liu, Q.S., Tay, J.H., Liu, Y.: Growth kinetics of aerobic granules developed in sequencing batch reactors. Lett. Appl. Microbiol. 38, 106–112 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bing-Jie Ni
    • 1
  1. 1.Advanced Water Management CentreThe University of QueenslandSt. Lucia BrisbaneAustralia

Personalised recommendations