Initial Evaluation of a Newly Developed High Resolution CT Imager for Dedicated Breast CT

  • Jainil P. Shah
  • Steve D. Mann
  • Andrew M. Polemi
  • Martin P. Tornai
  • Randolph L. McKinley
  • George Zentai
  • Michelle Richmond
  • Larry Partain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7361)

Abstract

A new, high resolution 40x30cm2 area CsI-TFT based CT imager having 127μm pixel pitch was developed for fully-3D breast CT imaging as part of a SPECT-CT system. The imager has two narrow edges suited for pendant breast CT imaging close to the chest wall. The scintillator thickness of 600 microns provides >90% absorption for the 36keV mean x-ray energy of the cone beam source. The 2D MTF is ~7.5% at the 3.9 lp/mm Nyquist frequency. The imager has excellent linearity over the full dynamic range. The imager is mounted on the CT device and initial tomographic imaging of geometric and breast phantoms demonstrate the reliable and robust imaging capabilities of this device for breast CT.

Keywords

Imaging X-ray imaging breast CT mammography mammotomography tomosynthesis flat panel imaging arrays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Madhav, P., Crotty, D.J., McKinley, R.L., Tornai, M.P.: Initial Development of a Dual-Modality SPECT-CT System for Dedicated Mammotomography. In: IEEE Nuclear Science Symposium & Medical Imaging Conference Record, vol. 4, pp. 2382–2386 (2006)Google Scholar
  2. 2.
    Tornai, M.P., McKinley, R.L., Brzymialkiewicz, C.N., et al.: Design and development of a fully-3D dedicated xray computed mammotomography system. In: Proc. SPIE: Phys. of Med. Imag., vol. 5745(1), pp. 189–197 (2005)Google Scholar
  3. 3.
    International Standard, IEC 62220-1 (2003) Google Scholar
  4. 4.
    Roos, P.G., Colbeth, R.E., Mollov, I., Munro, P., Pavkovich, J., Seppi, E.J., Shapiro, E.G., Tognina, C.A., Virshup, G.F., Yu, J.M., Zentai, G.: Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers. In: Proc. SPIE: Phys. of Med. Imag., vol. 5368, p. 139 (2004)Google Scholar
  5. 5.
    Samei, E., Flynn, M.J.: A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys. 25(1), 102–113 (1998)CrossRefGoogle Scholar
  6. 6.
    Greer, P.B., van Doom, T.: Evaluation of an algorithm for the assessment of the MTF using an edge method. Med. Phys. 27(9), 2048–2059 (2000)CrossRefGoogle Scholar
  7. 7.
    Madhav, P., McKinley, R.L., Samei, E., Bowsher, J.E., Tornai, M.P.: A novel method to characterize the MTF in 3D for computed mammotomography. In: Proc. SPIE: Phys. of Med. Imag., vol. 6142 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jainil P. Shah
    • 1
  • Steve D. Mann
    • 1
    • 2
  • Andrew M. Polemi
    • 2
  • Martin P. Tornai
    • 1
    • 2
  • Randolph L. McKinley
    • 3
  • George Zentai
    • 4
  • Michelle Richmond
    • 4
  • Larry Partain
    • 4
  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA
  2. 2.Medical Physics Graduate ProgramDuke University Medical CenterDurhamUSA
  3. 3.Zumatek, Inc.USA
  4. 4.Varian Medical SystemsGinzton Technology CenterMountain ViewUSA

Personalised recommendations