The Parameterized Complexity of the Shared Center Problem

  • Zhi-Zhong Chen
  • Lusheng Wang
  • Wenji Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7354)


Recently, the shared center (SC) problem has been proposed as a mathematical model for inferring the allele-sharing status of a given set of individuals using a database of confirmed haplotypes as reference. The problem was proved to be NP-complete and a ratio-2 polynomial-time approximation algorithm was designed for its minimization version (called the closest shared center (CSC) problem). In this paper, we consider the parameterized complexity of the SC problem. First, we show that the SC problem is W[1]-hard with parameters d and n, where d and n are the radius and the number of (diseased or normal) individuals in the input, respectively. Then, we present two asymptotically optimal parameterized algorithms for the problem.


Haplotype inference linkage analysis pedigree allele-sharing status parameterized complexity parameterized algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Z.-Z., Wang, L.: Fast exact algorithms for the closest string and substring problems with application to the planted (L,d)-motif model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1400–1410 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, Z.-Z., Ma, B., Wang, L.: A three-string approach to the closest string problem. Journal of Computer and System Sciences 78, 164–178 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Doi, K., Li, J., Jiang, T.: Minimum Recombinant Haplotype Configuration on Tree Pedigrees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 339–353. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monogr. Comput. Sci. Springer, New York (1999)CrossRefGoogle Scholar
  5. 5.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37, 25–42 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. System Sci. 63, 512–530 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Leykin, I., Hao, K., Cheng, J., Meyer, N., Pollak, M.R., Smith, R.J.H., Wong, W.H., Rosenow, C., Li, C.: Comparative linkage analysis and visualization of high-density oligonucleotide snp array data. BMC Genetics 6, 7 (2005)CrossRefGoogle Scholar
  8. 8.
    Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype configurations on pedigrees with missing data by integer linear programming. In: Proceedings of Symposium on Computational Molecular Biology (RECOMB), pp. 20–29 (2004)Google Scholar
  9. 9.
    Li, J., Jiang, T.: Computing the minimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming. Journal of Computational Biology 12(6), 719–739 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Ma, W., Yang, Y., Chen, Z.-Z., Wang, L.: Mutation region detection for closely related individuals without a known pedigree. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9, 499–510 (2012)CrossRefGoogle Scholar
  11. 11.
    Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM Journal on Computing 39, 1432–1443 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Marx, D.: Closest substring problems with small distances. SIAM Journal on Computing 38, 1382–1410 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sellick, G., Longman, C., Tolmie, J., Newbury-Ecob, R., Geenhalgh, L., Hughes, S., Whiteford, M., Carrett, C., Houlston, R.: Genomewide linkage searches for mendelian disease loci can be efficiently conducted using high-density snp genotyping arrays. Nucleic Acids Res 32(20), e164 (2004)Google Scholar
  14. 14.
    Wang, L., Zhu, B.: Efficient Algorithms for the Closest String and Distinguishing String Selection Problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Xiao, J., Liu, L., Xia, L., Jiang, T.: Fast elimination of redundant linear equations and reconstruction of recombination-free mendelian inheritance on a pedigree. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 655–664 (2007)Google Scholar
  16. 16.
    Zhao, R., Zhang, N.: A more efficient closest string algorithm. In: Proceedings of the 2nd International Conference on Bioinformatics and Computational Biology (BICoB), pp. 210–215 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhi-Zhong Chen
    • 1
  • Lusheng Wang
    • 2
  • Wenji Ma
    • 2
  1. 1.Department of Information System DesignTokyo Denki UniversityHatoyamaJapan
  2. 2.Department of Computer ScienceCity University of Hong KongKowloonHong Kong SAR

Personalised recommendations