Minimum Leaf Removal for Reconciliation: Complexity and Algorithms

  • Riccardo Dondi
  • Nadia El-Mabrouk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7354)


Reconciliation is a well-known method for studying the evolution of a gene family through speciation, duplication, and loss. Unfortunately, the inferred history strongly depends on the considered gene tree for the gene family, as a few misplaced leaves can lead to a completely different history, possibly with significantly more duplications and losses. It is therefore essential to develop methods that are able to preprocess and correct gene trees prior to reconciliation. In this paper, we consider a combinatorial problem, known as the Minimum Leaf Removal problem, that has been proposed to remove errors from a gene tree by deleting some of its leaves. We prove that the problem is APX-hard, even in the restricted case of a gene family with at most two copies per genome. On the positive side, we present fixed-parameter algorithms where the parameters are the size of the solution (minimum number of leaf removals) and the number of genomes containing multiple gene copies.


Species Tree Gene Tree Vertex Cover Leaf Removal Multiple Gene Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1-2), 123–134 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)Google Scholar
  3. 3.
    Arvestad, L., Berglung, A.C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: Gusfield, D. (ed.) RECOMB 2004, pp. 326–335. ACM, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Blin, G., Bonizzoni, P., Dondi, R., Rizzi, R., Sikora, F.: Complexity Insights of the Minimum Duplication Problem. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 153–164. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Blomme, T., Vandepoele, K., Bodt, S.D., Silmillion, C., Maere, S., van de Peer, Y.: The gain and loss of genes during 600 millions years of vertebrate evolution. Genome Biology 7, R43 (2006)Google Scholar
  6. 6.
    Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theoretical Computer Science 347, 36–53 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chang, W.-C., Eulenstein, O.: Reconciling Gene Trees with Apparent Polytomies. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Chauve, C., El-Mabrouk, N.: New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chen, K., Durand, D., Farach-Colton, M.: Notung: Dating gene duplications using gene family trees. Journal of Computational Biology 7, 429–447 (2000)CrossRefGoogle Scholar
  10. 10.
    Cotton, J., Page, R.: Rates and patterns of gene duplication and loss in the human genome. Proceedings of the Royal Society of London. Series B 272, 277–283 (2005)CrossRefGoogle Scholar
  11. 11.
    Demuth, J., Bie, T.D., Stajich, J., Cristianini, N., Hahn, M.: The evolution of mammalian gene families. PLoS ONE 1, e85 (2006)Google Scholar
  12. 12.
    Doroftei, A., El-Mabrouk, N.: Removing Noise from Gene Trees. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS (LNBI), vol. 6833, pp. 76–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Durand, D., Haldórsson, B., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. Journal of Computational Biology 13, 320–335 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Eichler, E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797 (2003)CrossRefGoogle Scholar
  15. 15.
    Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)CrossRefGoogle Scholar
  16. 16.
    Górecki, P., Eulenstein, O.: A Linear Time Algorithm for Error-Corrected Reconciliation of Unrooted Gene Trees. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 148–159. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Gorecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoretical Computer Science 359, 378–399 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Guigó, R., Muchnik, I., Smith, T.: Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6, 189–213 (1996)CrossRefGoogle Scholar
  19. 19.
    Hahn, M.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology 8(R141) (2007)Google Scholar
  20. 20.
    Hahn, M., Han, M., Han, S.G.: Gene family evolution across 12 drosophilia genomes. PLoS Genetics 3, e197 (2007)Google Scholar
  21. 21.
    Kristensen, D., Wolf, Y., Mushegian, A., Koonin, E.: Computational methods for gene orthology inference. Briefings in Bioinformatics 12(5), 379–391 (2011)CrossRefGoogle Scholar
  22. 22.
    Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput. 30, 729–752 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  24. 24.
    Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)Google Scholar
  25. 25.
    Page, R.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43, 58–77 (1994)Google Scholar
  26. 26.
    Page, R.: Genetree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14, 819–820 (1998)CrossRefGoogle Scholar
  27. 27.
    Page, R., Charleston, M.: Reconciled trees and incongruent gene and species trees. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 37, 57–70 (1997)MathSciNetGoogle Scholar
  28. 28.
    Page, R., Cotton, J.: Vertebrate phylogenomics: reconciled trees and gene duplications. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)Google Scholar
  29. 29.
    Sanderson, M., McMahon, M.: Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evolutionary Biology 7, S3 (2007)Google Scholar
  30. 30.
    Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species trees. Journal of Computational Biology 15, 981–1006 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Riccardo Dondi
    • 1
  • Nadia El-Mabrouk
    • 2
  1. 1.Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi CulturaliUniversit‘a degli Studi di BergamoBergamoItaly
  2. 2.Départment d’Informatique et Recherche OpérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations