Fixed-Parameter Algorithms for Finding Agreement Supertrees

  • David Fernández-Baca
  • Sylvain Guillemot
  • Brad Shutters
  • Sudheer Vakati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7354)


We study the agreement supertree approach for combining rooted phylogenetic trees when the input trees do not fully agree on the relative positions of the taxa. Two approaches to dealing with such conflicting input trees are considered. The first is to contract a set of edges in the input trees so that the resulting trees have an agreement supertree. We show that this problem is NP-complete and give an FPT algorithm for the problem parameterized by the number of input trees and the number of edges contracted. The second approach is to remove a set of taxa from the input trees so that the resulting trees have an agreement supertree. An FPT algorithm for this problem when the input trees are all binary was given by Guillemot and Berry (2010). We give an FPT algorithm for the more general case when the input trees have arbitrary degree.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. J. Discrete Algorithms 5(3), 564–591 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bininda-Emonds, O.R.P. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Ser. on Comp. Biol., vol. 4. Springer (2004)Google Scholar
  4. 4.
    Bryant, D.: Optimal Agreement Supertrees. In: Gascuel, O., Sagot, M.-F. (eds.) JOBIM 2000. LNCS, vol. 2066, pp. 24–31. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labelled leaves. J. Classification 9, 335–348 (1986)CrossRefGoogle Scholar
  6. 6.
    Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement supertree problem. IEEE/ACM Trans. Comput. Biology Bioinform. 7(2), 342–353 (2010)Google Scholar
  7. 7.
    Hoang, V.T., Sung, W.K.: Improved algorithms for maximum agreement and compatible supertrees. Algorithmica 59(2), 195–214 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted maximum agreement supertrees. Algorithmica 43(4), 293–307 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kao, M.Y.: Encyclopedia of algorithms. Springer, New York (2007)Google Scholar
  10. 10.
    Linder, C.R., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91(10), 1700–1708 (2004)CrossRefGoogle Scholar
  11. 11.
    Maddison, W.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)CrossRefGoogle Scholar
  12. 12.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: STOC 2011, pp. 469–478. ACM (2011)Google Scholar
  13. 13.
    Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1-2), 19–31 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Scornavacca, C.: Supertree methods for phylogenomics. Ph.D. thesis, Univ. of Montpellier II, Montpellier, France (2009)Google Scholar
  15. 15.
    Steel, M.A.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classification 9, 91–116 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Fernández-Baca
    • 1
  • Sylvain Guillemot
    • 1
  • Brad Shutters
    • 1
  • Sudheer Vakati
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations