CPM 2012: Combinatorial Pattern Matching pp 373-384

# Fixed-Parameter Algorithms for Finding Agreement Supertrees

• David Fernández-Baca
• Sylvain Guillemot
• Sudheer Vakati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7354)

## Abstract

We study the agreement supertree approach for combining rooted phylogenetic trees when the input trees do not fully agree on the relative positions of the taxa. Two approaches to dealing with such conflicting input trees are considered. The first is to contract a set of edges in the input trees so that the resulting trees have an agreement supertree. We show that this problem is NP-complete and give an FPT algorithm for the problem parameterized by the number of input trees and the number of edges contracted. The second approach is to remove a set of taxa from the input trees so that the resulting trees have an agreement supertree. An FPT algorithm for this problem when the input trees are all binary was given by Guillemot and Berry (2010). We give an FPT algorithm for the more general case when the input trees have arbitrary degree.

## Preview

### References

1. 1.
Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)
2. 2.
Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. J. Discrete Algorithms 5(3), 564–591 (2007)
3. 3.
Bininda-Emonds, O.R.P. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Ser. on Comp. Biol., vol. 4. Springer (2004)Google Scholar
4. 4.
Bryant, D.: Optimal Agreement Supertrees. In: Gascuel, O., Sagot, M.-F. (eds.) JOBIM 2000. LNCS, vol. 2066, pp. 24–31. Springer, Heidelberg (2001)
5. 5.
Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labelled leaves. J. Classification 9, 335–348 (1986)
6. 6.
Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement supertree problem. IEEE/ACM Trans. Comput. Biology Bioinform. 7(2), 342–353 (2010)Google Scholar
7. 7.
Hoang, V.T., Sung, W.K.: Improved algorithms for maximum agreement and compatible supertrees. Algorithmica 59(2), 195–214 (2011)
8. 8.
Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted maximum agreement supertrees. Algorithmica 43(4), 293–307 (2005)
9. 9.
Kao, M.Y.: Encyclopedia of algorithms. Springer, New York (2007)Google Scholar
10. 10.
Linder, C.R., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91(10), 1700–1708 (2004)
11. 11.
Maddison, W.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)
12. 12.
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: STOC 2011, pp. 469–478. ACM (2011)Google Scholar
13. 13.
Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1-2), 19–31 (1996)
14. 14.
Scornavacca, C.: Supertree methods for phylogenomics. Ph.D. thesis, Univ. of Montpellier II, Montpellier, France (2009)Google Scholar
15. 15.
Steel, M.A.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classification 9, 91–116 (1992)

## Authors and Affiliations

• David Fernández-Baca
• 1
• Sylvain Guillemot
• 1