The wavelet tree is a versatile data structure that serves a number of purposes, from string processing to geometry. It can be regarded as a device that represents a sequence, a reordering, or a grid of points. In addition, its space adapts to various entropy measures of the data it encodes, enabling compressed representations. New competitive solutions to a number of problems, based on wavelet trees, are appearing every year. In this survey we give an overview of wavelet trees and the surprising number of applications in which we have found them useful: basic and weighted point grids, sets of rectangles, strings, permutations, binary relations, graphs, inverted indexes, document retrieval indexes, full-text indexes, XML indexes, and general numeric sequences.


Binary Relation Inverted Index Document Retrieval Inverted List Left Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms on Words. NATO ISI Series, pp. 85–96. Springer (1985)Google Scholar
  2. 2.
    Arroyuelo, D., González, S., Oyarzún, M.: Compressed Self-indices Supporting Conjunctive Queries on Document Collections. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 43–54. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn. Addison-Wesley (2011)Google Scholar
  4. 4.
    Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-compressed sequence representations. CoRR, abs/0911.4981v4 (2012)Google Scholar
  5. 5.
    Barbay, J., Claude, F., Navarro, G.: Compact Rich-Functional Binary Relation Representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Barbay, J., Claude, F., Navarro, G.: Compact binary relation representations with rich functionality. CoRR, abs/1201.3602 (2012)Google Scholar
  7. 7.
    Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet Partitioning for Compressed Rank/Select and Applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation of set intersection algorithms for text searching. ACM J. Exp. Alg. 14 (2009)Google Scholar
  9. 9.
    Barbay, J., Navarro, G.: Compressed representations of permutations, and applications. In: Proc. 26th STACS, pp. 111–122 (2009)Google Scholar
  10. 10.
    Barbay, J., Navarro, G.: On compressing permutations and adaptive sorting. CoRR, abs/1108.4408 (2011)Google Scholar
  11. 11.
    Belazzougui, D., Navarro, G.: Alphabet-Independent Compressed Text Indexing. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Belazzougui, D., Navarro, G.: New lower and upper bounds for representing sequences. CoRR, abs/1111.2621 (2011)Google Scholar
  13. 13.
    Bell, T., Cleary, J., Witten, I.: Text Compression. Prentice Hall (1990)Google Scholar
  14. 14.
    Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the Longest Common Prefix Array Based on the Burrows-Wheeler Transform. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 197–208. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Bender, M., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct Orthogonal Range Search Structures on a Grid with Applications to Text Indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Bowe, A.: Multiary Wavelet Trees in Practice. Honours thesis, RMIT Univ., Australia (2010)Google Scholar
  18. 18.
    Brisaboa, N.R., Cerdeira-Pena, A., Navarro, G.: A Compressed Self-indexed Representation of XML Documents. In: Agosti, M., Borbinha, J., Kapidakis, S., Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 273–284. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Brisaboa, N., Fariña, A., Ladra, S., Navarro, G.: Reorganizing compressed text. In: Proc. 31st SIGIR, pp. 139–146 (2008)Google Scholar
  20. 20.
    Brisaboa, N., Fariña, A., Navarro, G., Paramá, J.: Lightweight natural language text compression. Inf. Retr. 10, 1–33 (2007)CrossRefGoogle Scholar
  21. 21.
    Brisaboa, N.R., Luaces, M.R., Navarro, G., Seco, D.: A Fun Application of Compact Data Structures to Indexing Geographic Data. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 77–88. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Tech. Rep. 124, Digital Equipment Corporation (1994)Google Scholar
  23. 23.
    Chan, H.-L., Hon, W.-K., Lam, T.-W., Sadakane, K.: Compressed indexes for dynamic text collections. ACM Trans. Alg. 3(2), article 21 (2007)Google Scholar
  24. 24.
    Chan, T., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Proc. 27th SoCG, pp. 1–10 (2011)Google Scholar
  25. 25.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comp. 17(3), 427–462 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Chien, Y.-F., Hon, W.-K., Shah, R., Vitter, J.: Geometric Burrows-Wheeler transform: Linking range searching and text indexing. In: Proc. 18th DCC, pp. 252–261 (2008)Google Scholar
  27. 27.
    Clark, D.: Compact Pat Trees. PhD thesis, Univ. of Waterloo, Canada (1996)Google Scholar
  28. 28.
    Claude, F., Navarro, G.: Practical Rank/Select Queries over Arbitrary Sequences. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Claude, F., Navarro, G.: Extended Compact Web Graph Representations. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp. 77–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fund. Inf. 111(3), 313–337 (2010)Google Scholar
  31. 31.
    Claude, F., Nicholson, P.K., Seco, D.: Space Efficient Wavelet Tree Construction. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 185–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Cover, T., Thomas, J.: Elements of Information Theory. Wiley (1991)Google Scholar
  33. 33.
    Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k Ranked Document Search in General Text Databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Farzan, A., Gagie, T., Navarro, G.: Entropy-Bounded Representation of Point Grids. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 327–338. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. Inf. Comp. 207(8), 849–866 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compression in optimal linear time. J. ACM 52(4), 688–713 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Proc. 41st FOCS, pp. 390–398 (2000)Google Scholar
  38. 38.
    Ferragina, P., Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552–581 (2005)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An Alphabet-Friendly FM-Index. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 150–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of sequences and full-text indexes. ACM Trans. Alg. 3(2), article 20 (2007)Google Scholar
  41. 41.
    Fischer, J.: Optimal Succinctness for Range Minimum Queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Gagie, T., Kärkkäinen, J.: Counting Colours in Compressed Strings. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 197–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    Gagie, T., Navarro, G., Nekrich, Y.: Fast and Compact Prefix Codes. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 419–427. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  44. 44.
    Gagie, T., Navarro, G., Puglisi, S.J.: Colored Range Queries and Document Retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  45. 45.
    Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and applications to information retrieval. Theor. Comp. Sci. 426-427, 25–41 (2012)CrossRefGoogle Scholar
  46. 46.
    Gagie, T., Puglisi, S.J., Turpin, A.: Range Quantile Queries: Another Virtue of Wavelet Trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 1–6. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  47. 47.
    Gog, S.: Compressed Suffix Trees: Design, Construction, and Applications. PhD thesis, Univ. of Ulm, Germany (2011)Google Scholar
  48. 48.
    Golynski, A.: Optimal Lower Bounds for Rank and Select Indexes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 370–381. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  49. 49.
    Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comp. Sci. 387(3), 348–359 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the Size of Succinct Indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 371–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  51. 51.
    Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a tool for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)Google Scholar
  52. 52.
    Gonnet, G., Baeza-Yates, R., Snider, T.: New indices for text: Pat trees and Pat arrays. In: Information Retrieval: Data Structures and Algorithms, ch. 3, pp. 66–82. Prentice-Hall (1992)Google Scholar
  53. 53.
    González, R., Navarro, G.: Compressed Text Indexes with Fast Locate. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  54. 54.
    Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In: Proc. 14th SODA, pp. 841–850 (2003)Google Scholar
  55. 55.
    Grossi, R., Gupta, A., Vitter, J.: When indexing equals compression: Experiments with compressing suffix arrays and applications. In: Proc. 15th SODA, pp. 636–645 (2004)Google Scholar
  56. 56.
    Grossi, R., Ottaviano, G.: The wavelet trie: Maintaining an indexed sequence of strings in compressed space. In: Proc. 31st PODS (to appear, 2012)Google Scholar
  57. 57.
    Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications to text indexing and string matching. In: Proc. 32nd STOC, pp. 397–406 (2000)Google Scholar
  58. 58.
    Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SIAM J. Comp. 35(2), 378–407 (2006)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Grossi, R., Vitter, J., Xu, B.: Wavelet trees: From theory to practice. In: Proc. 1st CCP, pp. 210–221 (2011)Google Scholar
  60. 60.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. 10th SIGMOD, pp. 47–57 (1984)Google Scholar
  61. 61.
    He, M., Munro, J.I.: Succinct Representations of Dynamic Strings. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  62. 62.
    Huffman, D.: A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E. 40(9), 1090–1101 (1952)CrossRefGoogle Scholar
  63. 63.
    Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th FOCS, pp. 549–554 (1989)Google Scholar
  64. 64.
    JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  65. 65.
    Jørgensen, A.G., Larsen, K.D.: Range selection and median: Tight cell probe lower bounds and adaptive data structures. In: Proc. 22nd SODA, pp. 805–813 (2011)Google Scholar
  66. 66.
    Kärkkäinen, J.: Repetition-Based Text Indexing. PhD thesis, Univ. of Helsinki, Finland (1999)Google Scholar
  67. 67.
    Kärkkäinen, J., Puglisi, S.J.: Fixed Block Compression Boosting in FM-Indexes. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 174–184. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  68. 68.
    Kreft, S., Navarro, G.: Self-indexing Based on LZ77. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  69. 69.
    Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proceedings of the IEEE 88(11), 1722–1732 (2000)CrossRefGoogle Scholar
  70. 70.
    Mäkinen, V., Navarro, G.: New search algorithms and time/space tradeoffs for succinct suffix arrays. Tech. Rep. C-2004-20, Univ. of Helsinki, Finland (April 2004)Google Scholar
  71. 71.
    Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. Nordic J. Comp. 12(1), 40–66 (2005)Google Scholar
  72. 72.
    Mäkinen, V., Navarro, G.: Position-Restricted Substring Searching. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  73. 73.
    Mäkinen, V., Navarro, G.: Implicit Compression Boosting with Applications to Self-indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 229–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  74. 74.
    Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comp. Sci. 387(3), 332–347 (2007)zbMATHCrossRefGoogle Scholar
  75. 75.
    Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)CrossRefGoogle Scholar
  76. 76.
    Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM J. Comp. 22(5), 935–948 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–430 (2001)MathSciNetCrossRefGoogle Scholar
  78. 78.
    McCreight, E.: A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  80. 80.
    Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc. 13th SODA, pp. 657–666 (2002)Google Scholar
  81. 81.
    Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discr. Alg. 2(1), 87–114 (2004)zbMATHCrossRefGoogle Scholar
  82. 82.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1), article 2 (2007)Google Scholar
  83. 83.
    Navarro, G., Nekrich, Y., Russo, L.: Space-efficient data-analysis queries on grids. CoRR, abs/1106.4649v2 (2012)Google Scholar
  84. 84.
    Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Proc. 11th SEA (to appear, 2012)Google Scholar
  85. 85.
    Navarro, G., Puglisi, S.J.: Dual-Sorted Inverted Lists. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 309–321. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  86. 86.
    Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical Compressed Document Retrieval. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  87. 87.
    Navarro, G., Russo, L.M.S.: Space-Efficient Data-Analysis Queries on Grids. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 323–332. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  88. 88.
    Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. CoRR, abs/0905.0768v5 (2010)Google Scholar
  89. 89.
    Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary. In: Proc. 9th ALENEX (2007)Google Scholar
  90. 90.
    Pătraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th STOC, pp. 40–46 (2007)Google Scholar
  91. 91.
    Pătraşcu, M.: Succincter. In: Proc. 49th FOCS, pp. 305–313 (2008)Google Scholar
  92. 92.
    Pătraşcu, M., Viola, E.: Cell-probe lower bounds for succinct partial sums. In: Proc. 21st SODA, pp. 117–122 (2010)Google Scholar
  93. 93.
    Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)Google Scholar
  94. 94.
    Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional Search in a String with Wavelet Trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 40–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  95. 95.
    Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-Length Compressed Indexes Are Superior for Highly Repetitive Sequence Collections. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  96. 96.
    Tischler, G.: On Wavelet Tree Construction. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 208–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  97. 97.
    Välimäki, N., Mäkinen, V.: Space-Efficient Algorithms for Document Retrieval. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  98. 98.
    Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)Google Scholar
  99. 99.
    Witten, I., Moffat, A., Bell, T.: Managing Gigabytes, 2nd edn. Morgan Kaufmann (1999)Google Scholar
  100. 100.
    Yu, C.-C., Hon, W.-K., Wang, B.-F.: Efficient Data Structures for the Orthogonal Range Successor Problem. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 96–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gonzalo Navarro
    • 1
  1. 1.Dept. of Computer ScienceUniversity of ChileChile

Personalised recommendations