Hardness of Longest Common Subsequence for Sequences with Bounded Run-Lengths

  • Guillaume Blin
  • Laurent Bulteau
  • Minghui Jiang
  • Pedro J. Tejada
  • Stéphane Vialette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7354)

Abstract

The longest common subsequence (LCS) problem is a classic and well-studied problem in computer science with extensive applications in diverse areas ranging from spelling error corrections to molecular biology. This paper focuses on LCS for fixed alphabet size and fixed run-lengths (i.e., maximum number of consecutive occurrences of the same symbol). We show that LCS is NP-complete even when restricted to (i) alphabets of size 3 and run-length at most 1, and (ii) alphabets of size 2 and run-length at most 2 (both results are tight). For the latter case, we show that the problem is approximable within ratio 3/5.

Keywords

Input Sequence Input String Longe Common Subsequence Input Instance Longe Common Subsequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ann, H.-Y., Yang, C.-B., Tseng, C.-T., Hor, C.-Y.: Fast algorithms for computing the constrained lcs of run-length encoded strings. In: Arabnia, H.R., Yang, M.Q. (eds.) Proc. International Conference on Bioinformatics & Computational Biology (BIOCOMP), Las Vegas, USA, pp. 646–649. CSREA Press (2009)Google Scholar
  2. 2.
    Ann, H.-Y., Yang, C.-B., Tseng, C.-T., Hor, C.-Y.: A fast and simple algorithm for computing the longest common subsequence of run-length encoded strings. Information Processing Letters 108, 360–364 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Apostolico, A., Landau, G.M., Skiena, S.: Matching for run-length encoded strings. Journal of Complexity 15(1), 4–16 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proc. of the 7th International Symposium on String Processing Information Retrieval (SPIRE), Coru\(\tilde{\text{n}}\)a, Spain, pp. 39–48. IEEE Computer Society (2000)Google Scholar
  5. 5.
    Berman, P., Schnitger, G.: On the complexity of approximating the independent set problem. Information and Computation 96, 77–94 (1992)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.: Parameterized complexity analysis in computational biology. Computer Applications in the Biosciences 11(1), 49–57 (1995)Google Scholar
  7. 7.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parameterized complexity of sequence alignment and consensus. Theoretical Computer Science 147, 31–54 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonizzoni, P., Della Vedova, G., Mauri, G.: Experimenting an approximation algorithm for the lcs. Discrete Applied Mathematics 110(1), 13–24 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bunke, H., Csirik, J.: An improved algorithm for computing the edit distance of run-length coded strings. Information Processing Letters 54, 93–96 (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, Cambridge (2007)Google Scholar
  11. 11.
    Freschi, V., Bogliolo, A.: Longest common subsequence between run-length-encoded strings: a new algorithm with improved parallelism. Information Processing Letters 90, 167–173 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Halldórsson, M.M.: Approximation via partitioning. Technical report, School of Information Science, Japan Advanced Institute of Science and Technology, Hokuriku (1995)Google Scholar
  13. 13.
    Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palindromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Huang, G.S., Liu, J.J., Wang, Y.L.: Sequence Alignment Algorithms for Run-Length-Encoded Strings. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 319–330. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal on Computing 24, 1122–1139 (1995)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palindromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing similarity of run-length encoded strings with affine gap penalty. Theoretical Computer Science 395, 268–282 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Liu, J.J., Huang, G.S., Wang, Y.L.: A fast algorithm for finding the positions of all squares in a run-length encoded string. Theoretical Computer Science 410, 3942–3948 (2009)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Liu, J.J., Huang, G.S., Wang, Y.L., Lee, R.C.T.: Edit distance for a run-length-encoded string and an uncompressed string. Information Processing Letters 105, 12–16 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, J.J., Wang, Y.L., Lee, R.C.T.: Finding a longest common subsequence between a run-length-encoded string and an uncompressed string. Journal of Complexity 24, 173–184 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theoretical Computer Science 410, 900–913 (2009)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Mitchell, J.S.B.: A geometric shortest path problem, with application to computing a longest common subsequence in run-length encoded strings. Technical report, Department of Applied Mathematics, SUNY Stony Brook (1997)Google Scholar
  24. 24.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. of Computer and System Sciences 67(4), 757–771 (2003); Special issue on Parameterized computation and complexityMathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guillaume Blin
    • 1
  • Laurent Bulteau
    • 2
  • Minghui Jiang
    • 3
  • Pedro J. Tejada
    • 3
  • Stéphane Vialette
    • 1
  1. 1.LIGM, UMR 8049Université Paris-EstFrance
  2. 2.LINA, UMR 6241Université de NantesFrance
  3. 3.Department of Computer ScienceUtah State UniversityUSA

Personalised recommendations