Advertisement

Efficient Two-Dimensional Pattern Matching with Scaling and Rotation and Higher-Order Interpolation

  • Christian Hundt
  • Florian Wendland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7354)

Abstract

Two-dimensional pattern matching with scaling and rotation for given pattern P and text T is the computational problem of finding a subtext in T such that a scaled and rotated transformation of P most accurately resembles the subtext. Applications of pattern matching are found, for instance, in computer vision, medical imaging, pattern recognition and watermarking. All known approaches to find a globally optimal matching depend on the basic nearest-neighbor interpolation. To use higher-order interpolations, current algorithms apply numerical techniques that provide only locally optimal solutions. This paper presents the first algorithm to find an optimal match under a large class of higher-order interpolation methods including bilinear and bicubic. The algorithm exploits a discrete characterization of the parameter space for scalings and rotations to achieve a polynomial time complexity.

Keywords

combinatorial pattern matching discrete scalings and rotations higher-order interpolation methods discrete algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bovik, A. (ed.): Handbook of Image and Video Processing. Academic Press, San Diego (2000)zbMATHGoogle Scholar
  2. 2.
    Amir, A., Butman, A., Crochemore, M., Landau, G., Schaps, M.: Two-dimensional pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173–187 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled matching. Algorithmica 53(3), 314–336 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amir, A., Chencinski, E.: Faster Two Dimensional Scaled Matching. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 200–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Amir, A., Kapah, O., Tsur, D.: Faster Two Dimensional Pattern Matching with Rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 409–419. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–376 (1992)CrossRefGoogle Scholar
  7. 7.
    Cox, I.J., Bloom, J.A., Miller, M.L.: Digital Watermarking, Principles and Practice. Morgan Kaufmann, San Francisco (2001)Google Scholar
  8. 8.
    Diochnos, D.I., Emiris, I.Z., Tsigaridas, U.E.P.: On the asymptotic and practical complexity of solving bivariate systems over the reals. J. Sym. Comput. 44(7), 818–835 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and indexed two-dimensional combinatorial template matching allowing rotations. Theor. Comput. Sci. 347(1-2), 239–275 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fredriksson, K., Ukkonen, E.: A Rotation Invariant Filter for Two-Dimensional String Matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 118–125. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Hundt, C., Liśkiewicz, M., Nevries, R.: A combinatorial geometric approach to two-dimensional robustly pattern matching with scaling and rotation. Theor. Comput. Sci. 51(410), 5317–5333 (2009)CrossRefGoogle Scholar
  13. 13.
    Indyk, P.: Algorithmic aspects of geometric embeddings. In: Proc. FOCS 2001, pp. 10–33 (2001)Google Scholar
  14. 14.
    Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise: Combinatorial bounds and algorithms. In: Proc. SODA 1999, pp. 354–360 (1999)Google Scholar
  15. 15.
    Kasturi, R., Jain, R.C.: Computer Vision: Principles. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  16. 16.
    Kropatsch, W.G., Bischof, H. (eds.): Digital Image Analysis - Selected Techniques and Applications. Springer, Berlin (2001)zbMATHGoogle Scholar
  17. 17.
    Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Algorithmica 12(3/4), 375–408 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  19. 19.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press (2004)Google Scholar
  20. 20.
    Nevries, R.: Entwicklung und Analyse eines beschleunigten Image Matching-Algorithmus für natürliche Bilder, Diplomarbeit, Universität Rostock (2008)Google Scholar
  21. 21.
    Rump, S.M.: Polynomial minimum root separation. Math. Comp. 33(145), 327–336 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Wendland, F.: Exact polynomial algorithms for image matching with bilinear interpolation, Master Thesis, Universität Rostock (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Hundt
    • 1
  • Florian Wendland
    • 1
  1. 1.Institut für InformatikUniversität RostockGermany

Personalised recommendations