CoTAGs and ACGs

  • Gregory M. Kobele
  • Jens Michaelis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7351)


Our main concern is to provide a complete picture of how coTAGs, as a particular variant within the general framework of tree adjoining grammars (TAGs), can be captured under the notion of abstract categorial grammars (ACGs). coTAGs have been introduced by Barker [1] as an “alternative conceptualization” in order to cope with the tension between the TAG-mantra of the “locality of syntactic dependencies” and the seeming non-locality of quantifier scope. We show how our formalization of Barker’s proposal leads to a class of higher order ACGs. By taking this particular perspective, Barker’s proposal turns out as a straightforward extension of the proposal of Pogodalla [11], where the former in addition to “simple” inverse scope phenomena also captures inverse linking and non-inverse linking phenomena.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, C.: Cosubstitution, derivational locality, and quantifier scope. In: Proceedings of the Tenth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+10), New Haven, CT, pp. 135–142 (2010)Google Scholar
  2. 2.
    Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Mathematical Systems Theory 20, 83–127 (1987)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    de Groote, P.: Towards abstract categorial grammars. In: 39th Annual Meeting of the Association for Computational Linguistics (ACL 2001), Toulouse, pp. 252–259. ACL (2001)Google Scholar
  4. 4.
    de Groote, P.: Tree-adjoining grammars as abstract categorial grammars. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+6), Venezia, pp. 145–150 (2002)Google Scholar
  5. 5.
    Habel, A., Kreowski, H.J.: Some Structural Aspects of Hypergraph Languages Generated by Hyperedge Replacement. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 207–219. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  6. 6.
    Joshi, A.K.: An introduction to tree adjoining grammars. In: Manaster-Ramer, A. (ed.) Mathematics of Language, pp. 87–114. John Benjamins, Amsterdam (1987)Google Scholar
  7. 7.
    Joshi, A.K., Schabes, Y.: Tree adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 69–124. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Kanazawa, M.: Parsing and generation as datalog queries. In: 45th Annual Meeting of the Association for Computational Linguistics (ACL 2007), Prague, pp. 176–183. ACL (2007)Google Scholar
  9. 9.
    Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replacement grammars. Journal of Logic, Language and Information 19, 137–161 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Pogodalla, S.: Computing semantic representation. Towards ACG abstract terms as derivation trees. In: Proceedings of the Seventh International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+7), Vancouver, BC, pp. 64–71 (2004)Google Scholar
  11. 11.
    Pogodalla, S.: Ambiguïté de portée et approche fonctionnelle des grammaires d’arbres adjoints. In: Traitement Automatique des Langues Naturelles (TALN 2007), Toulouse, 10 pages (2007)Google Scholar
  12. 12.
    Salvati, S.: Encoding second order string ACG with deterministic tree walking transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th Conference on Formal Grammar, pp. 143–156. CSLI Publications, Stanford (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gregory M. Kobele
    • 1
  • Jens Michaelis
    • 2
  1. 1.University of ChicagoChicagoUSA
  2. 2.Bielefeld UniversityBielefeldGermany

Personalised recommendations