Movement-Generalized Minimalist Grammars

  • Thomas Graf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7351)


A general framework is presented that allows for Minimalist grammars to use arbitrary movement operations under the proviso that they are all definable by monadic second-order formulas over derivation trees. Lowering, sidewards movement, and clustering, among others, are the result of instantiating the parameters of this framework in a certain way. Even though weak generative capacity is not increased, strong generative capacity may change depending on the available movement types. Notably, TAG-style tree adjunction can be emulated by a special type of lowering movement.


Minimalist Grammars Movement Monadic Second-Order Logic Tree Languages Transductions Tree Adjunction Grammar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic second-order logic and attribute grammars. Journal of Computational System Science 61, 1–50 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Gärtner, H.-M., Michaelis, J.: On the treatment of multiple-wh-interrogatives in minimalist grammars. In: Hanneforth, T., Fanselow, G. (eds.) Language and Logos, pp. 339–366. Akademie Verlag, Berlin (2010)Google Scholar
  3. 3.
    Graf, T.: Closure Properties of Minimalist Derivation Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 96–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Graf, T.: Locality and the complexity of minimalist derivation tree languages. In: Proceedings of the 16th Conference on Formal Grammar (2011) (to appear)Google Scholar
  5. 5.
    Graf, T.: Tree adjunction as lowering in minimalist grammars (2012), ms., UCLAGoogle Scholar
  6. 6.
    Harkema, H.: A Characterization of Minimalist Languages. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Hornstein, N.: Movement and control. Linguistic Inquiry 30, 69–96 (1999)CrossRefGoogle Scholar
  8. 8.
    Joshi, A.: Tree-adjoining grammars: How much context sensitivity is required to provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky, A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press, Cambridge (1985)Google Scholar
  9. 9.
    Kobele, G.M.: Generating Copies: An Investigation into Structural Identity in Language and Grammar. Ph.D. thesis, UCLA (2006)Google Scholar
  10. 10.
    Kobele, G.M.: Across-the-board extraction and minimalist grammars. In: Proceedings of the Ninth International Workshop on Tree Adjoining Grammars and Related Frameworks (2008)Google Scholar
  11. 11.
    Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 129–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80 (2007)Google Scholar
  13. 13.
    Michaelis, J.: Transforming Linear Context-Free Rewriting Systems into Minimalist Grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Mönnich, U.: Grammar morphisms (2006), University of TübingenGoogle Scholar
  15. 15.
    Nunes, J.: The Copy Theory of Movement and Linearization of Chains in the Minimalist Program. Ph.D. thesis, University of Maryland, College Park (1995)Google Scholar
  16. 16.
    Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity. CSLI, Stanford (1998)zbMATHGoogle Scholar
  17. 17.
    Salvati, S.: Minimalist Grammars in the Light of Logic. In: Pogodalla, S., Quatrini, M., Retoré, C. (eds.) Logic and Grammar. LNCS, vol. 6700, pp. 81–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff, G.-J.M., Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford (1999)Google Scholar
  20. 20.
    Stabler, E.P.: Sidewards without copying. In: Penn, G., Satta, G., Wintner, S. (eds.) Proceedings of the Conference on Formal Grammar 2006, pp. 133–146. CSLI Publications, Stanford (2006)Google Scholar
  21. 21.
    Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.) Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press, Oxford (2011)Google Scholar
  22. 22.
    Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293, 345–363 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Graf
    • 1
  1. 1.Department of LinguisticsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations