The EEM in Nonparabolic Semiconductors Under Magnetic Quantization

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 167)

Abstract

It is well known that the band structure of semiconductors can be dramatically changed by applying the external fields [1-68]. The effects of the quantizing magnetic field on the band structure of compound semiconductors are more striking and can be observed easily in experiments. Under magnetic quantization, the motion of the electron parallel to the magnetic field remains unaltered while the area of the wave vector space perpendicular to the direction of the magnetic field gets quantized in accordance with the Landau’s rule of area quantization in the wave vector space [40-68]. The energy levels of the carriers in a magnetic field (with the component of the wave vector parallel to the direction of magnetic field be equated with zero) are termed as the Landau levels and the quantized energies are known as the Landau subbands. It is important to note that the same conclusion may be arrived either by solving the single-particle time-independent Schrödinger differential equation in the presence of a quantizing magnetic field or by using the operator method. The quantizing magnetic field tends to remove the degeneracy and increases the band gap.

Keywords

Magnetic Field Electron Concentration Electron Spin Fermi Energy Landau Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Miura, Physics of Semiconductors in High Magnetic Fields, Series on Semiconductor Science and Technology (Oxford University Press, USA, 2007)Google Scholar
  2. 2.
    K.H.J Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Springer, New York, 2003)Google Scholar
  3. 3.
    D. Sellmyer, R. Skomski (ed.), Advanced Magnetic Nanostructures (Springer, New York, 2005)Google Scholar
  4. 4.
    J.A.C. Bland, B. Heinrich (ed.), Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism (Part 3) (Springer, Germany, 2005)Google Scholar
  5. 5.
    B.K. Ridley, Quantum Processes in Semiconductors 4th edn. (Oxford publications, Oxford, 1999)Google Scholar
  6. 6.
    J.H. Davies, Physics of Low Dimensional Semiconductors (Cambridge University Press, UK, 1998)Google Scholar
  7. 7.
    S. Blundell, Magnetism in Condensed Matter Oxford Master Series in Condensed Matter Physics (Oxford University Press, USA, 2001)Google Scholar
  8. 8.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Publishers, USA, 1991)Google Scholar
  9. 9.
    D. Ferry, Semiconductor Transport (CRC, USA, 2000)Google Scholar
  10. 10.
    M. Reed (ed.), Semiconductors and Semimetals: Nanostructured Systems (Academic Press, USA, 1992)Google Scholar
  11. 11.
    T. Dittrich, Quantum Transport and Dissipation (Wiley, Germany, 1998)MATHGoogle Scholar
  12. 12.
    A.Y. Shik, Quantum Wells: Physics and Electronics of Twodimensional Systems (World Scientific, USA, 1997)Google Scholar
  13. 13.
    K.P. Ghatak, M. Mondal, Zietschrift fur naturforschung A 41a, 881 (1986)Google Scholar
  14. 14.
    K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    K.P. Ghatak, S.N. Biswas, Phys. Stat. Sol. (b) 140, K107 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Ghatak, M. Mondal, J. Mag. Mag. Mat. 74, 203 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 139, 195 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    K.P. Ghatak, B. Mitra, A. Ghoshal, Phys. Stat. Sol. (b) 154, K121 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    K.P. Ghatak, S.N. Biswas, J. Low Temp. Phys. 78, 219 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 160, 673 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    K.P. Ghatak, B. Mitra, Phys. Letts. A 156, 233 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    K.P. Ghatak, A. Ghoshal, B. Mitra, Nouvo Cimento D 13D, 867 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    K.P. Ghatak, B. Mitra, Int. J. Elect. 70, 345 (1991)CrossRefGoogle Scholar
  26. 26.
    K.P. Ghatak, S.N. Biswas, J. Appl. Phys. 70, 299 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    K.P. Ghatak, A. Ghoshal, Phys. Stat. Sol. (b) 170, K27 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    K.P. Ghatak, Nouvo Cimento D 13D, 1321 (1992)ADSGoogle Scholar
  29. 29.
    K.P. Ghatak, B. Mitra, Int. J. Elect. 72, 541 (1992)CrossRefGoogle Scholar
  30. 30.
    K.P. Ghatak, S.N. Biswas, Nonlinear Opt. 4, 347 (1993)Google Scholar
  31. 31.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 175, 113 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    K.P. Ghatak, S.N. Biswas, Nonlinear Opt. 4, 39 (1993)Google Scholar
  33. 33.
    K.P. Ghatak, B. Mitra, Nouvo Cimento 15D, 97 (1993)ADSGoogle Scholar
  34. 34.
    K.P. Ghatak, S.N. Biswas, Nanostruct. Mater. 2, 91 (1993)CrossRefGoogle Scholar
  35. 35.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 185, K5 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    K.P. Ghatak, B. Goswami, M. Mitra, B. Nag, Nonlinear Opt. 16, 9 (1996)Google Scholar
  37. 37.
    K.P. Ghatak, M. Mitra, B. Goswami, B. Nag, Nonlinear Opt. 16, 167 (1996)Google Scholar
  38. 38.
    K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Sol. 58, 133 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    K.P. Ghatak, B. Nag, Nanostruct. Mater. 10, 923 (1998)CrossRefGoogle Scholar
  40. 40.
    D. Roy Choudhury, A.K. Choudhury, K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b) 98, K141 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    A.N. Chakravarti, K.P. Ghatak, A. Dhar, S. Ghosh, Phys. Stat. Sol. (b) 105, K55 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    A.N. Chakravarti, A.K. Choudhury, K.P. Ghatak, Phys. Stat. Sol. (a) 63, K97 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    A.N. Chakravarti, A.K. Choudhury, K.P. Ghatak, S. Ghosh, A. Dhar, Appl. Phys. 25, 105 (1981)ADSCrossRefGoogle Scholar
  44. 44.
    A.N. Chakravarti, K.P. Ghatak, G.B. Rao, K.K. Ghosh, Phys. Stat. Sol. (b) 112, 75 (1982)ADSCrossRefGoogle Scholar
  45. 45.
    A.N. Chakravarti, K.P. Ghatak, K.K. Ghosh, H.M. Mukherjee, Phys. Stat. Sol. (b) 116, 17 (1983)ADSCrossRefGoogle Scholar
  46. 46.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 133, K143 (1984)ADSCrossRefGoogle Scholar
  47. 47.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 126, K47 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 126, K41 (1984)ADSCrossRefGoogle Scholar
  49. 49.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 129, K745 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    M. Mondal, K.P. Ghatak, Phys. Scr. 31, 615 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, 239 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 93, 377 (1986)ADSCrossRefGoogle Scholar
  53. 53.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, K21 (1986)ADSCrossRefGoogle Scholar
  54. 54.
    M. Mondal, S. Bhattacharyya, K.P. Ghatak, Appl. Phys. A 42A, 331 (1987)ADSCrossRefGoogle Scholar
  55. 55.
    S.N. Biswas, N. Chattopadhyay, K.P. Ghatak, Phys. Stat. Sol. (b) 141, K47 (1987)ADSCrossRefGoogle Scholar
  56. 56.
    B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b) 149, K117 (1988)ADSCrossRefGoogle Scholar
  57. 57.
    B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 150, K67 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 147, K179 (1988)ADSCrossRefGoogle Scholar
  59. 59.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 146, K97 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 153, K209 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    B. Mitra, K.P. Ghatak, Phys. Letts. 142A, 401 (1989)ADSCrossRefGoogle Scholar
  62. 62.
    B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 154, K147 (1989)ADSCrossRefGoogle Scholar
  63. 63.
    B. Mitra, K.P. Ghatak, Sol. State Elect. 32, 515 (1989)ADSCrossRefGoogle Scholar
  64. 64.
    B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 155, K23 (1989)ADSCrossRefGoogle Scholar
  65. 65.
    B. Mitra, K.P. Ghatak, Phys. Letts. 135A, 397 (1989)ADSCrossRefGoogle Scholar
  66. 66.
    B. Mitra, K.P. Ghatak, Phys. Letts. A 146A, 357 (1990)ADSCrossRefGoogle Scholar
  67. 67.
    B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b) 164, K13 (1991)ADSCrossRefGoogle Scholar
  68. 68.
    S.N. Biswas, K.P. Ghatak, Int. J. Elect. 70, 125 (1991)CrossRefGoogle Scholar
  69. 69.
    P.R. Wallace, Phys. Stat. Sol. (b) 92, 49 (1979)ADSCrossRefGoogle Scholar
  70. 70.
    B.R. Nag, Electron Transport in Compound Semiconductors, Springer Series in Solid-State Sciences, vol. 11 (Springer, Germany, 1980)Google Scholar
  71. 71.
    K.P. Ghatak, S. Bhattacharya, D. De, Einstein Relation in Compound Semiconductors and Their Nanostructures, Springer Series in Materials Science, vol. 116 (Springer, Germany, 2009)Google Scholar
  72. 72.
    C.C. Wu, C.J. Lin, J. Low, Temp. Phys. 57, 469 (1984)Google Scholar
  73. 73.
    M.H. Chen, C.C. Wu, C.J. Lin, J. Low, Temp. Phys. 55, 127 (1984)Google Scholar
  74. 74.
    E. Bangert, P. Kastner, Phys. Stat. Sol (b) 61, 503 (1974)ADSCrossRefGoogle Scholar
  75. 75.
    G.M.T. Foley, P.N Langenberg. Phys. Rev. B 15B, 4850 (1977)ADSCrossRefGoogle Scholar
  76. 76.
    M. Singh, P.R. Wallace, S.D. Jog, E. Arushanov, J. Phys. Chem. Solids 45, 409 (1984)ADSCrossRefGoogle Scholar
  77. 77.
    Y. Yamada, Phys. Soc. Japan 35, 1600 (1973)ADSCrossRefGoogle Scholar
  78. 78.
    Y. Yamada, Phys. Soc. Japan 37, 606 (1974)ADSCrossRefGoogle Scholar
  79. 79.
    R.W. Cunningham, Phys. Rev. 167, 761 (1968)ADSCrossRefGoogle Scholar
  80. 80.
    A.I. Yekimov, A.A. Onushchenko, A.G. Plyukhin, Al, L. Efros, J. Expt. Theor. Phys. 88, 1490 (1985)Google Scholar
  81. 81.
    B.J. Roman, A.W. Ewald, Phys. Rev. B 5, 3914 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sitangshu Bhattacharya
    • 1
  • Kamakhya Prasad Ghatak
    • 2
  1. 1.Department of Electronics Systems Engineering, Nano Scale Device Research LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations