Advertisement

TARCLOUD: A Cloud-Based Platform to Support miRNA Target Prediction

  • Thanasis Vergoulis
  • Michail Alexakis
  • Theodore Dalamagas
  • Manolis Maragkakis
  • Artemis G. Hatzigeorgiou
  • Timos Sellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7338)

Abstract

Micro RNAs (miRNAs) are small RNA molecules that target protein coding genes and inhibit protein production. Since experimental identification of miRNA targets poses difficulties, computational miRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. However, these computational methods are CPU-intensive. For example, the predictions for a single miRNA molecule on the whole human genome according to a popular target prediction method require about 30 minutes. Such performance is a hindrance to the biologists’ requirement for near-real time target prediction. In this paper, we present TARCLOUD, a Cloud-based target prediction solution built on Microsoft’s Azure platform. TARCLOUD is a highly-scalable solution based on distributed programming models that provides near-real time predictions to its users through an easy and intuitive interface. The work has been selected as one of the pilot use cases for the VENUS-C FP7 Research Infrastructures Program.

Keywords

Cloud Computing miRNA target prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexiou, P., Maragkakis, M., Papadopoulos, G.L., Reczko, M., Hatzigeorgiou, A.G.: Lost in translation: an assessment and perspective for computational microrna target identification. Bioinformatics 25(23), 3049–3055 (2009)CrossRefGoogle Scholar
  2. 2.
    Doench, J.G., Sharp, P.A.: Specificity of microrna target selection in translational repression. Genes Dev. 18(5), 504–511 (2004)CrossRefGoogle Scholar
  3. 3.
    Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., Hatzigeorgiou, A.G.: A combined computational-experimental approach predicts human microrna targets. Genes Dev. 18, 1165–1178 (2004)CrossRefGoogle Scholar
  4. 4.
    Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial microrna target predictions. Nature Genetics 37, 495–500 (2005)CrossRefGoogle Scholar
  5. 5.
    Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 120, 15–20 (2005)CrossRefGoogle Scholar
  6. 6.
    Maragkakis, M., Reczko, M., Simossis, V.A., Alexiou, P., Papadopoulos, G.L., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, K., Kourtis, K., Vergoulis, T., Koziris, N., Sellis, T., Tsanakas, P., Hatzigeorgiou, A.G.: Diana-microt web server: elucidating microrna functions through target prediction. Nucleic Acids Research 37(suppl. 2), W273–W276 (2009)CrossRefGoogle Scholar
  7. 7.
    Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerrich, R.: Fast and effective prediction of microrna/target duplexes. RNA 10, 1507–1517 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thanasis Vergoulis
    • 1
    • 2
  • Michail Alexakis
    • 2
  • Theodore Dalamagas
    • 2
  • Manolis Maragkakis
    • 4
  • Artemis G. Hatzigeorgiou
    • 3
  • Timos Sellis
    • 1
    • 2
  1. 1.NTUAAthensGreece
  2. 2.IMIS, “Athena” R.C.AthensGreece
  3. 3.DIANA-Lab, B.S.R.C. “Alexander Fleming”AthensGreece
  4. 4.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations