Scalable Computation of Isochrones with Network Expiration

  • Johann Gamper
  • Michael Böhlen
  • Markus Innerebner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7338)


An isochrone in a spatial network is the possibly disconnected set of all locations from where a query point is reachable within a given time span and by a given arrival time. In this paper we propose an efficient and scalable evaluation algorithm, termed (MINEX), for the computation of isochrones in multimodal spatial networks with different transportation modes. The space complexity of MINEX is independent of the network size and its runtime is determined by the incremental loading of the relevant network portions. We show that MINEX is optimal in the sense that only those network portions are loaded that eventually will be part of the isochrone. To keep the memory requirements low, we eagerly expire the isochrone and only keep in memory the minimal set of expanded vertices that is necessary to avoid cyclic expansions. The concept of expired vertices reduces MINEX’s memory requirements from \({\mathcal O}({\vert V^{iso}\vert})\) to \({\mathcal O}(\sqrt{\vert V^{iso}\vert})\) for grid and \({\mathcal O}(1)\) for spider networks, respectively. We show that an isochrone does not contain sufficient information to identify expired vertices, and propose an efficient solution that counts for each vertex the outgoing edges that have not yet been traversed. A detailed empirical study confirms the analytical results on synthetic data and shows that for real-world data the memory requirements are very small indeed, which makes the algorithm scalable for large networks and isochrones.


spatial network databases isochrones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balasubramanian, V., Kalashnikov, D.V., Mehrotra, S., Venkatasubramanian, N.: Efficient and scalable multi-geography route planning. In: EDBT, pp. 394–405 (2010)Google Scholar
  2. 2.
    Bast, H.: Car or Public Transport—Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Computing isochrones in multi-modal, schedule-based transport networks. In: ACMGIS, pp. 1–2 (2008)Google Scholar
  4. 4.
    de Almeida, V.T., Güting, R.H.: Using Dijkstra’s algorithm to incrementally find the k-nearest neighbors in spatial network databases. In: SAC, pp. 58–62 (2006)Google Scholar
  5. 5.
    Deng, K., Zhou, X., Shen, H.T., Sadiq, S.W., Li, X.: Instance optimal query processing in spatial networks. VLDB J. 18(3), 675–693 (2009)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT, pp. 205–216 (2008)Google Scholar
  8. 8.
    Gamper, J., Böhlen, M.H., Cometti, W., Innerebner, M.: Defining isochrones in multimodal spatial networks. In: CIKM, pp. 2381–2384 (2011)Google Scholar
  9. 9.
    Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of shortest paths in large graphs. In: CIKM, pp. 499–508. ACM, New York (2010)Google Scholar
  10. 10.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics SSC-4(2), 100–107 (1968)CrossRefGoogle Scholar
  11. 11.
    Hu, H., Lee, D.-L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Huang, R.: A schedule-based pathfinding algorithm for transit networks using pattern first search. GeoInformatica 11(2), 269–285 (2007)CrossRefGoogle Scholar
  13. 13.
    Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. IEEE Trans. Knowl. Data Eng. 10(3), 409–432 (1998)CrossRefGoogle Scholar
  14. 14.
    Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)CrossRefGoogle Scholar
  15. 15.
    Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE (2006)Google Scholar
  16. 16.
    Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB, pp. 840–851 (2004)Google Scholar
  17. 17.
    Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical Graph Embedding for Efficient Query Processing in Very Large Traffic Networks. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Marciuska, S., Gamper, J.: Determining Objects within Isochrones in Spatial Network Databases. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 392–405. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)Google Scholar
  20. 20.
    Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM, pp. 867–876 (2009)Google Scholar
  21. 21.
    Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD Conference, pp. 43–54 (2008)Google Scholar
  22. 22.
    Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192. ACM, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johann Gamper
    • 1
  • Michael Böhlen
    • 2
  • Markus Innerebner
    • 1
  1. 1.Free University of Bozen-BolzanoItaly
  2. 2.University of ZurichSwitzerland

Personalised recommendations