Aggregating and Disaggregating Flexibility Objects

  • Laurynas Šikšnys
  • Mohamed E. Khalefa
  • Torben Bach Pedersen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7338)

Abstract

Flexibility objects, objects with flexibilities in time and amount dimensions (e.g., energy or product amount), occur in many scientific and commercial domains. Managing such objects with existing DBMSs is infeasible due to the complexity, data volume, and complex functionality needed, so a new kind of flexibility database is needed. This paper is the first to consider flexibility databases. It formally defines the concept of flexibility objects (flex-objects), and provide a novel and efficient solution for aggregating and disaggregating flex-objects. This is important for a range of applications, including smart grid energy management. The paper considers the grouping of flex-objects, alternatives for computing aggregates, the disaggregation process, their associated requirements, as well as efficient incremental computation. Extensive experiments based on data from a real-world energy domain project show that the proposed solution provides good performance while still satisfying the strict requirements.

Keywords

Start Time Temporal Aggregation Aggregation Approach Minimum Bound Rectangle Early Start Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates. In: Proc. of VLDB, pp. 336–347 (2004)Google Scholar
  2. 2.
    Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipic, B., Fischer, U., Lehner, W., Pedersen, T.B., Pitarch, Y., Siksnys, L., Tusar, T.: Data management in the mirabel smart grid system. In: Proc. of EnDM (2012)Google Scholar
  3. 3.
    Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your temporal data? In: Proc. of TIME, pp. 121–136 (2006)Google Scholar
  4. 4.
    Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional Aggregation for Temporal Data. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 257–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Cabot, J., Mazón, J.-N., Pardillo, J., Trujillo, J.: Specifying Aggregation Functions in Multidimensional Models with OCL. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 419–432. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chow, C.Y., Mokbel, M.F., He, T.: Aggregate location monitoring for wireless sensor networks: A histogram-based approach. In: Proc. of MDM, pp. 82–91 (2009)Google Scholar
  7. 7.
    Gao, D., Gendrano, J.A.G., Moon, B., Snodgrass, R.T., Park, M., Huang, B.C., Rodrigue, J.M.: Main memory-based algorithms for efficient parallel aggregation for temporal databases. Distributed Parallel Databases 16(2), 123–163 (2004)CrossRefGoogle Scholar
  8. 8.
    Gordevičius, J., Gamper, J., Böhlen, M.: Parsimonious temporal aggregation. In: Proc. of EDBT, pp. 1006–1017 (2009)Google Scholar
  9. 9.
    Hou, G., Yao, R., Ren, J., Hu, C.: A Clustering Algorithm Based on Matrix over High Dimensional Data Stream. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318, pp. 86–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)CrossRefGoogle Scholar
  11. 11.
    Jin, C., Carbonell, J.G.: Incremental Aggregation on Multiple Continuous Queries. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 167–177. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Lei, G., Yu, X., Yang, X., Chen, S.: An incremental clustering algorithm based on grid. In: Proc. of FSKD, pp. 1099–1103. IEEE (2011)Google Scholar
  13. 13.
    Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281–297 (1967)Google Scholar
  14. 14.
    Malinowski, E., Zimnyi, E.: Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications, 1st edn. Springer (2008)Google Scholar
  15. 15.
    Moon, B., Fernando Vega Lopez, I., Immanuel, V.: Efficient algorithms for large-scale temporal aggregation. TKDE 15(3), 744–759 (2003)Google Scholar
  16. 16.
    Park, N.H., Lee, W.S.: Statistical grid-based clustering over data streams. SIGMOD Rec. 33(1), 32–37 (2004)CrossRefGoogle Scholar
  17. 17.
    Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and querying complex multidimensional data. Information Systems 26(5), 383–423 (2001)MATHCrossRefGoogle Scholar
  18. 18.
    Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster method. The Computer Journal 16(1) (January 1973)Google Scholar
  19. 19.
    Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.A.: SimDB: A similarity-aware database system. In: Proc. of SIGMOD (2010)Google Scholar
  20. 20.
    Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by. In: Proc. of ICDE, pp. 904–915 (2009)Google Scholar
  21. 21.
    Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. VLDB 12(3), 262–283 (2003)CrossRefGoogle Scholar
  22. 22.
    Yue, M.: A simple proof of the inequality \(FFD(L)\leq\frac{11}{9}OPT(L)+1,\forall L\) for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4), 321–331 (1991)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Zhang, D.: Aggregation computation over complex objects. Ph.D. thesis, University of California, Riverside, USA (2002)Google Scholar
  24. 24.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proc. of SIGMOD, pp. 103–114 (1996)Google Scholar
  25. 25.
    Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring over moving objects. IEEE Trans. Knowl. Data Eng. 20(9), 1205–1216 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laurynas Šikšnys
    • 1
  • Mohamed E. Khalefa
    • 1
  • Torben Bach Pedersen
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityDenmark

Personalised recommendations