Towards Efficient Join Processing over Large RDF Graph Using MapReduce
Abstract
Existing solutions for answering SPARQL queries in a shared-nothing environment using MapReduce failed to fully explore the substantial scalability and parallelism of the computing framework. In this paper, we propose a cost model based RDF join processing solution using MapReduce to minimize the query responding time as much as possible. After transforming a SPARQL query into a sequence of MapReduce jobs, we propose a novel index structure, called All Possible Join tree (APJ-tree), to reduce the searching space for the optimal execution plan of a set of MapReduce jobs. To speed up the join processing, we employ hybrid join and bloom filter for performance optimization. Extensive experiments on real data sets proved the effectiveness of our cost model. Our solution has as much as an order of magnitude time saving compared with the state of art solutions.
Keywords
Query Processing Cost Model Input Size SPARQL Query Query Processing TimePreview
Unable to display preview. Download preview PDF.
References
- 1.Husain, M.F., et al.: Data intensive query processing for large RDF graphs using cloud computing tools. In: CLOUD 2010 (2010)Google Scholar
- 2.Farhan Husain, M., Doshi, P., Khan, L., Thuraisingham, B.: Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 680–686. Springer, Heidelberg (2009)Google Scholar
- 3.Myung, J., et al.: Sparql basic graph pattern processing with iterative mapreduce. In: MDAC 2010 (2010)Google Scholar
- 4.Tanimura, Y., et al.: Extensions to the pig data processing platform for scalable RDF data processing using hadoop. In: 22nd International Conference on Data Engineering Workshops, pp. 251–256 (2010)Google Scholar
- 5.Chebotko, A., Atay, M., Lu, S., Fotouhi, F.: Relational Nested Optional Join for Efficient Semantic Web Query Processing. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 428–439. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 6.Jaynes, E.T.: Probability theory: The logic of science. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
- 7.Zhang, X., et al.: Towards efficient join processing over large RDF graph using mapreduce. Technical Report (2011)Google Scholar
- 8.
- 9.Blanas, S., et al.: A comparison of join algorithms for log processing in mapreduce. In: SIGMOD 2010 (2010)Google Scholar
- 10.
- 11.Thomas, N., et al.: The RDF-3x engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)CrossRefGoogle Scholar
- 12.Weiss, C., et al.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. (2008)Google Scholar
- 13.Neumann, T., et al.: Scalable join processing on very large RDF graphs. In: SIGMOD Conference, pp. 627–640 (2009)Google Scholar
- 14.Abadi, D.J., et al.: Sw-store: a vertically partitioned dbms for semantic web data management. The VLDB Journal 18, 385–406 (2009)CrossRefGoogle Scholar
- 15.
- 16.Newman, A., et al.: A scale-out RDF molecule store for distributed processing of biomedical data. In: Semantic Web for Health Care and Life Sciences Workshop (2008)Google Scholar
- 17.Newman, A., et al.: Scalable semantics - the silver lining of cloud computing. In: ESCIENCE 2008 (2008)Google Scholar
- 18.Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 19.McGlothlin, J.P., et al.: Rdfkb: efficient support for RDF inference queries and knowledge management. In: IDEAS 2009 (2009)Google Scholar
- 20.
- 21.Afrati, F.N., et al.: Optimizing joins in a map-reduce environment. In: EDBT 2010 (2010)Google Scholar