Advertisement

Representing Category and Continuum: Visualizing Thought

  • Barbara Tversky
  • James E. Corter
  • Lixiu Yu
  • David L. Mason
  • Jeffrey V. Nickerson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7352)

Abstract

Abstract thought has roots in the spatial world. Abstractions are expressed in the ways things are arranged in the world as well as the ways people talk and gesture. Mappings to the page should be better when they are congruent, that is, when the abstract concept matches the spatial one. Congruent mappings can be revealed in people’s performance and preferences. Congruence is supported here for visual representations of continuum and category. Congruently mapping a continuous concept, frequency, to a continuous visual variable and mapping a categorical concept, class inclusion, to a categorical visual variable were preferred and led to better performance than the reverse mappings.

Keywords

diagrams spatial metaphors design networks information systems reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertin, J.: Graphics and Graphic Information Processing. Walter de Gruyter, New York (1981)CrossRefGoogle Scholar
  2. 2.
    Boroditsky, L.: Metaphoric Structuring: Understanding Time Through Spatial Metaphors. Cognition 75, 1–28 (2000)CrossRefGoogle Scholar
  3. 3.
    Cleveland, W.S.: The Elements of Graphing Data. Wadsworth, Monterey (1985)Google Scholar
  4. 4.
    Cooper, W.E., Ross, J.R.: World Order. In: Grossman, R.E., San, L.J., Vances, T.J. (eds.) Papers From the Parasession on Functionalism, pp. 63–111. Chicago Linguistic Society, Chicago (1975)Google Scholar
  5. 5.
    Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming 8, 231–274 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kessell, A.M., Tversky, B.: Visualizing Space, Time, and Agents: Production, Performance, and Preference. Cognitive Processing 12, 43–52 (2011)CrossRefGoogle Scholar
  7. 7.
    Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (1980)Google Scholar
  8. 8.
    Landy, D., Goldstone, R.L.: How Abstract is Symbolic Thought? Journal of Experimental Psychology: Learning, Memory, & Cognition 33, 720–733 (2007)CrossRefGoogle Scholar
  9. 9.
    Nickerson, J.V., Tversky, B., Corter, J.E., Yu, L., Mason, D.: Thinking with Networks. In: Proceedings of the 32nd Annual Conference of the Cognitive Science Society (2010)Google Scholar
  10. 10.
    Norman, D.A.: Things That Make us Smart. Addison-Wesley, Reading (1993)Google Scholar
  11. 11.
    Novick, L.R., Hurley, S.M.: To Matrix, Network, or Hierarchy: That is the Question. Cognitive Psychology 42, 158–216 (2001)CrossRefGoogle Scholar
  12. 12.
    Shepard, R.N.: Perceptual-cognitive Universals as Reflections of the World. Behavioral and Brain Sciences 24, 581–601 (2001)Google Scholar
  13. 13.
    Talmy, L.: How language Structures Space. In: Pick Jr., H.L., Acredolo, L.P. (eds.) Spatial Orientation: Theory, Research and Application, pp. 225–282. Plenum, New York (1983)Google Scholar
  14. 14.
    Tollis, I.G., Di Battista, G., Eades, P., Tamasssia, R.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New York (1998)Google Scholar
  15. 15.
    Tversky, B.: Spatial schemas in depictions. In: Gattis, M. (ed.) Spatial Schemas and Abstract Thought, pp. 79–111. MIT Press, Cambridge (2001)Google Scholar
  16. 16.
    Tversky, B.: Tools for Thought. In: Benedetti, B., Cook, V. (eds.) Language and Bilingual Cognition, pp. 131–139. Psychology Press, New York (2011a)Google Scholar
  17. 17.
    Tversky, B.: Visualizing Thought. Topics in Cognitive Science 3, 499–535 (2011b)CrossRefGoogle Scholar
  18. 18.
    Tversky, B., Agrawala, M., Heiser, J., Lee, P.U., Hanrahan, P., Phan, D., Stolte, C., Daniel, M.-P.: Cognitive Design Principles for Generating Visualizations. In: Allen, G. (ed.) Applied Spatial Cognition: From Research to Cognitive Technology, pp. 53–73. Erlbaum, Mahwah (2007)Google Scholar
  19. 19.
    Tversky, B., Kugelmass, S., Winter, A.: Cross-cultural and Developmental Trends in Graphic Productions. Cognitive Psychology 23, 515–557 (1991)CrossRefGoogle Scholar
  20. 20.
    Tversky, B., Morrison, J.B., Betrancourt, M.: Animation: Can it Facilitate? International Journal of Human Computer Studies 57, 247–262 (2002)CrossRefGoogle Scholar
  21. 21.
    Tversky, B., Zacks, J., Lee, P., Heiser, J.: Lines, Blobs, Crosses and Arrows: Diagrammatic Communication with Schematic Figures. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI), vol. 1889, pp. 221–230. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Zacks, J., Tversky, B.: Bars and Lines: A Study of Graphic Communication. Memory and Cognition 27, 1073–1079 (1999)CrossRefGoogle Scholar
  23. 23.
    Zahner, D., Corter, J.E.: The process of probability problem solving: Use of external visual representations. Mathematical Thinking and Learning 12, 177–204 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhang, J.: External representations in complex information processing tasks. In: Kent, A. (ed.) Encyclopedia of Library and Information Science, vol. 68, pp. 164–180. Marcel Dekker, Inc., New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barbara Tversky
    • 1
    • 2
  • James E. Corter
    • 1
  • Lixiu Yu
    • 3
  • David L. Mason
    • 1
  • Jeffrey V. Nickerson
    • 3
  1. 1.Columbia Teachers CollegeNew YorkUSA
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations