Boolean Differences between Two Hexagonal Extensions of the Logical Square of Oppositions

  • Hans Smessaert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7352)

Abstract

The classical Aristotelian Square characterizes four formulae in terms of four relations of Opposition: contradiction, contrariety, subcontrariety, and subalternation. This square has been extended into a hexagon by two different strategies of inserting intermediate formulae: (1) the horizontal SB-insertion of Sesmat-Blanché and (2) the vertical SC-insertion of Sherwood-Czeżowski. The resulting visual constellations of opposition relations are radically different, however. The central claim of this paper is that these differences are due to the fact that the SB hexagon is closed under the Boolean operations of meet, join and complement, whereas the SC hexagon is not. Therefore we define the Boolean closure of the SC hexagon by characterizing the remaining 8 (non-trivial) formulae, and demonstrate how the resulting 14 formulae generate 6 SB hexagons. These can be embedded into a much richer 3D Aristotelian structure, namely a rhombic dodecahedron, which also underlies the modal system S5 and the propositional connectives.

Keywords

square of oppositions hexagon of oppositions logical geometry Boolean closure 3D visualisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical Investigations 10, 218–232 (2003)Google Scholar
  2. 2.
    Blanché, R.: Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Librairie Philosophique J. Vrin, Paris (1969)Google Scholar
  3. 3.
    Czeżowski, T.: On certain peculiarities of singular propositions. Mind 64(255), 392–395 (1955)CrossRefGoogle Scholar
  4. 4.
    Demey, L.: Structures of Oppositions in Public Announcement Logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Springer, Basel (2012)Google Scholar
  5. 5.
    Horn, L.R.: Hamburgers and truth: Why Gricean explanation is Gricean. In: Hall, K. (ed.) Proceedings of the Sixteenth Annual Meeting of the Berkeley Linguistics Society, pp. 454–471. Berkeley Linguistics Society, Berkeley (1990)Google Scholar
  6. 6.
    Humberstone, L.: Modality. In: Jackson, F., Smith, M. (eds.) The Oxford Handbook of Contemporary Philosophy, pp. 534–614. OUP, Oxford (2005)Google Scholar
  7. 7.
    Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of opposition. In: Béziau, J.Y., Payette, G. (eds.) New Perspectives on the Square of Opposition. Peter Lang, Bern (2011)Google Scholar
  8. 8.
    Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive Editions, Minneapolis (1966)Google Scholar
  9. 9.
    Moretti, A.: The Geometry of Logical Opposition. Ph.D. thesis, University of Neuchâtel (2009)Google Scholar
  10. 10.
    Pellissier, R.: Setting n-opposition. Logica Universalis 2(2), 235–263 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Sauriol, P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)CrossRefGoogle Scholar
  12. 12.
    Sesmat, A.: Logique II. Les Raisonnements. Hermann, Paris (1951)Google Scholar
  13. 13.
    Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis 3(2), 303–332 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans Smessaert
    • 1
  1. 1.Department of LinguisticsUniversity of LeuvenBelgium

Personalised recommendations