Orthogonal Hyperedge Routing

  • Michael Wybrow
  • Kim Marriott
  • Peter J. Stuckey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7352)

Abstract

Orthogonal connectors are used in drawings of many network diagrams, especially those representing electrical circuits. Such diagrams frequently include hyperedges—single edges that connect more than two endpoints. While many interactive diagram editors provide some form of automatic connector routing we are unaware of any that provide automatic routing for orthogonal hyperedge connectors. We give three algorithms for hyperedge routing in an interactive diagramming editor. The first supports semi-automatic routing in which a route given by the user is improved by local transformations while the other two support fully-automatic routing and are heuristics based on an algorithm used for connector routing in circuit layout.

Keywords

orthogonal routing hyperedges circuit diagrams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajwani, G., Chu, C., Mak, W.K.: FOARS: FLUTE based obstacle-avoiding rectilinear steiner tree construction. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 30(2), 194–204 (2011)CrossRefGoogle Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  3. 3.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics 12, 741–748 (2006)CrossRefGoogle Scholar
  4. 4.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  5. 5.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics (1992)Google Scholar
  6. 6.
    Lin, C.W., Chen, S.Y., Li, C.F., Chang, Y.W., Yang, C.L.: Efficient obstacle-avoiding rectilinear steiner tree construction. In: Proc. of the 2007 Int. Symp. on Physical Design, ISPD 2007, pp. 127–134. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Long, J., Zhou, H., Memik, S.O.: EBOARST: An efficient edge-based obstacle-avoiding rectilinear steiner tree construction algorithm. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 27(12), 2169–2182 (2008)CrossRefGoogle Scholar
  8. 8.
    Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving Layered Graph Layouts with Edge Bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 329–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental Connector Routing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal Connector Routing. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 219–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Wybrow
    • 1
  • Kim Marriott
    • 1
  • Peter J. Stuckey
    • 2
  1. 1.National ICT Australia, Victoria Laboratory, Clayton School of Information TechnologyMonash UniversityClaytonAustralia
  2. 2.National ICT Australia, Victoria Laboratory, Department of Computing and Information SystemsUniversity of MelbourneAustralia

Personalised recommendations