Usage of Pseudo-estimator LAD and SARIMA Models for Network Traffic Prediction: Case Studies

  • Maciej Szmit
  • Anna Szmit
Part of the Communications in Computer and Information Science book series (CCIS, volume 291)

Abstract

This article focuses on the application of SARIMA models and Last Absolute Deviation pseudo-estimator in Auto Regression models of network traffic for various types of network protocols in sample computer networks. The models are used to build predicted patterns of traffic.

Keywords

intruder detection systems anomaly detection autoregression models ARIMA models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skowronski, M., Wezyk, R., Szmit, M.: Detekcja anomalii ruchu sieciowego w programie Snort. Hakin9 3, 64–68 (2007)Google Scholar
  2. 2.
    Skowronski, M., Wezyk, R., Szmit, M.: Preprocesory detekcji anomalii dla programu Snort. In: Sieci Komputerowe. Aplikacje i zastosowania, vol. 2, pp. 333–338. Wydawnictwa Komunikacji i Lacznosci, Gliwice (2007)Google Scholar
  3. 3.
    Szmit, M., Szmit, A.: Use of Holt-Winters Method in the Analysis of Network Traffic: Case Study. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 224–231. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Szmit, M.: Wyuziti nula-jednickovych modelu pro behavioralni analyzu sitoveho provozu. In: Internet, Competitiveness and Organizational Security, TBU Zlin 2011, pp. 266–299 (2011)Google Scholar
  5. 5.
    Szmit, M., Wezyk, R., Skowronski, M., Szmit, A.: Traffic Anomaly Detection with Snort. In: Information Systems Architecture and Technology. Information Systems and Computer Communication Networks. Wydawnictwo Politechniki Wroclawskiej, Wroclaw (2007)Google Scholar
  6. 6.
    Brutlag, J.D.: Aberrant Behavior Detection in Time Series for Network Monitoring. In: 14th System Administration Conference Proceedings, New Orleans, pp. 139–146 (2000)Google Scholar
  7. 7.
    Box, G.E.P., Jenkins, G.M.: Analiza szeregow czasowych. Prognozowanie i sterowanie. PWN, Warszawa (1983)Google Scholar
  8. 8.
    Klevecka, I.: Forecasting Network Traffic: a Comparison of Neural Networks and Linear Models. In: Proceedings of the 9th International Conference “Reliability and Statistics in Transportation and Communication”, RelStat 2009, Riga, October 21-24 (2009)Google Scholar
  9. 9.
    Maronna, R., Martin, R.D., Yohai, V.: Robust Statistics – Theory and Methods. Wiley (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maciej Szmit
    • 1
    • 2
  • Anna Szmit
    • 2
  1. 1.Orange LabsWarszawaPolska
  2. 2.Technical University of LodzLodzPolska

Personalised recommendations