Indoor Pedestrian Navigation Based on Hybrid Route Planning and Location Modeling

  • Kari Rye Schougaard
  • Kaj Grønbæk
  • Tejs Scharling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7319)


This paper introduces methods and services called PerPosNav for development of custom indoor pedestrian navigation applications to be deployed on a variety of platforms. PerPosNav is built on top of the PerPos positioning middleware [8] that fusions GPS, WiFi and inertial tracking into indoor positioning with high accuracy in many types of buildings. The challenges of indoor navigation are discussed and the PerPosNav services are introduced. PerPosNav combines symbolic and geometry based modeling of buildings, and in turn combines graph-based and geometric route computation. The paper argues why these hybrid approaches are necessary to handle the challenges of indoor pedestrian navigation. Furthermore, a fluent navigation is maintained via route tracking and navigation services that generate instructions based on how the user moves in relation to the prescribed route. The viability of PerPosNav has been proven by implementation of support for multiple modes of pedestrian indoor navigation: 1) augmented signs, 2) map based navigation on smartphones, 3) auditory navigation on smartphones solely via earbuds, and 4) augmented reality navigation. Experiences from the use of the PerPosNav services are discussed and compared to other indoor pedestrian navigation approaches.


Location Model Decision Point Visibility Graph Dead Reckoning Augmented Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arikawa, M., Konomi, S., Ohnishi, K.: Navitime: Supporting Pedestrian Navigation in the Real World. IEEE Pervasive Computing 6(3), 21–29 (2007)CrossRefGoogle Scholar
  2. 2.
    Baus, J., Krüger, A., Wahlster, W.: A resource-adaptive mobile navigation system. In: IUI 2002, pp. 15–22 (2002)Google Scholar
  3. 3.
    Becker, C., Dürr, F.: On location models for ubiquitous computing. Personal and Ubiquitous Computing 9(1), 20–31 (2005)CrossRefGoogle Scholar
  4. 4.
    Beeharee, A., Steed, A.: Minimising Pedestrian Navigational Ambiguities Through Geoannotation and Temporal Tagging. In: Jacko, J.A. (ed.) HCI 2007, Part II. LNCS, vol. 4551, pp. 748–757. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bellavista, P., Corradi, A., Giannelli, C.: The PoSIM middleware for translucent and context-aware integrated management of heterogeneous positioning systems. Computer Communications 31(6), 1078–1090 (2008)CrossRefGoogle Scholar
  6. 6.
    Bessho, M., Kobayashi, S., Koshizuka, N., Sakamurai, K.: A Pedestrian Navigation System using Multiple Space-Identifying Devices based on a Unique Identifier Framework. In: International Conference on Machine Learning and Cybernetics (2007)Google Scholar
  7. 7.
    Bessho, M., Kobayashi, S., Koshizuka, N., Sakamura, K.: uNavi: Implementation and Deployment of a Place-Based Pedestrian Navigation System. In: COMPSAC 2008, pp. 1254–1259 (2008)Google Scholar
  8. 8.
    Blunck, H., Godsk, T., Grønbæk, K., Kjærgaard, M.B., Jensen, J.L., Scharling, T., Schougaard, K.R., Toftkjær, T.: PerPos: a platform providing cloud services for pervasive positioning. In: COM.Geo (2010)Google Scholar
  9. 9.
    Butz, A., Baus, J., Krüger, A., Lohse, M.: A hybrid indoor navigation system. In: IUI 2001, pp. 25–32 (2001)Google Scholar
  10. 10.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerical Mathematics (1), 269–271 (1959)Google Scholar
  11. 11.
    Gartner, G., Frank, A., Retscher, G.: Pedestrian Navigation System - in Mixed Indoor/Outdoor Environment – The NAVIO Project. In: Proceedings of the CORP 2004 and Geomultimedia 2004 Symposium, Vienna, Austria, February 24-27, pp. 165–171 (2004)Google Scholar
  12. 12.
    Glanzer, G., Walder, U.: Self-contained indoor pedestrian navigation by means of human motion analysis and magnetic field mapping. In: WPNC 2010, pp. 303–307 (2010)Google Scholar
  13. 13.
    Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing 28(6), 2215–2256 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hightower, J., Brumitt, B., Borriello, G.: The location stack: a layered model for location in ubiquitous computing. In: Proceedings of the 4th IEEE Workshop on Mobile Computing Systems and Applications (2002)Google Scholar
  15. 15.
    Hile, H., Grzeszczuk, R., Liu, A., Vedantham, R., Košecka, J., Borriello, G.: Landmark-Based Pedestrian Navigation with Enhanced Spatial Reasoning. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 59–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Kjærgaard, M.B., Blunck, H., Godsk, T., Toftkjær, T., Christensen, D.L., Grønbæk, K.: Indoor Positioning Using GPS Revisited. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 38–56. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Küpper, A., Treu, G., Linnhoff-Popien, C.: Trax: a device-centric middleware framework for location-based services. IEEE Communications Magazine 44(9), 114–120 (2006)CrossRefGoogle Scholar
  18. 18.
    Meng, L., Reichenbacher, T., Zipf, A.: Map-based Mobile Services - Theories, Methods and Implementations, 260 pages. Springer, Heidelberg (2005) ISBN 3-540-23055-6Google Scholar
  19. 19.
    Ladetto, Q., Gabaglio, V., Merminod, B.: International Symposium on Location Based Services for Cellular Users, Locellus (2001)Google Scholar
  20. 20.
    Langdal, J., Schougaard, K.R., Kjærgaard, M.B., Toftkjær, T.: PerPos: A Translucent Positioning Middleware Supporting Adaptation of Internal Positioning Processes. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010. LNCS, vol. 6452, pp. 232–251. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    May, A.J., Ross, R., Bayer, S.H., Tarkiainen, M.J.: Pedestrian navigation aids: information requirements and design implications. Personal Ubiquitous Comput. 7(6), 331–338 (2003)CrossRefGoogle Scholar
  22. 22.
    Narzt, W., Pomberger, G., Ferscha, A., Kolb, D., Müller, R., Wieghardt, J., Hörtner, H., Lindinger, C.: Augmented reality navigation systems. Universal Access in the Information Society, vol. 4(3), pp. 177–187. Springer, Heidelberg (2006) ISSN 1615-5289Google Scholar
  23. 23.
    Ohlbach, H.J., Stoffel, E.P.: Versatile Route Descriptions for Pedestrian Guidance in Buildings–Conceptual Model and Systematic Method. In: AGILE 2008 Proc. (2008)Google Scholar
  24. 24.
    Pielot, M., Boll, S.: Tactile Wayfinder: Comparison of Tactile Waypoint Navigation with Commercial Pedestrian Navigation Systems. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 76–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Ranganathan, A., Al-Muhtadi, J., Chetan, S., Campbell, R., Mickunas, M.D.: MiddleWhere: A Middleware for Location Awareness in Ubiquitous Computing Applications. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 397–416. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Ruppel, P., Gschwandtner, F., Schindhelm, C.K., Linnhoff-Popien, C.: Indoor Navigation on Distributed Stationary Display Systems. In: COMPSAC, vol. (1), pp. 37–44 (2009)Google Scholar
  27. 27.
    Stevenson, G., Ye, J., Dobson, S., Nixon, P.: LOC8: A Location Model and Extensible Framework for Programming with Location. IEEE Pervasive Computing 9(1), 28–37 (2010)CrossRefGoogle Scholar
  28. 28.
    Stoffel, E.-P., Lorenz, B., Ohlbach, H.J.: Towards a Semantic Spatial Model for Pedestrian Indoor Navigation. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 328–337. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Toftkjær, T.: Accurate Positioning of Pedestrians in Mixed Indoor/Outdoor Settings: A Particle Filter Approach to Sensor and Map Fusion. PhD. Dissertation, Aarhus University, Department of Computer ScienceGoogle Scholar
  30. 30.
    Völkel, T., Kühn, R., Weber, G.: Mobility Impaired Pedestrians Are Not Cars: Requirements for the Annotation of Geographical Data. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1085–1092. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Ye, J., Coyle, L., Dobson, S., Nixon, P.: A Unified Semantics Space Model. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 103–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kari Rye Schougaard
    • 1
  • Kaj Grønbæk
    • 1
  • Tejs Scharling
    • 2
  1. 1.Department of Computer ScienceUniversity of AarhusDenmark
  2. 2.Alexandra InstituteAarhusDenmark

Personalised recommendations