AWESOM: Automatic Discrete Partitioning of Indoor Spaces for WiFi Fingerprinting

  • Teemu Pulkkinen
  • Petteri Nurmi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7319)


WiFi fingerprinting is currently one of the most popular techniques for indoor localization as it provides reasonable positioning accuracy while at the same time being able to exploit existing wireless infrastructure. To facilitate calibration efforts and to overcome fluctuations in location measurements, many indoor WiFi positioning systems utilize a discrete partitioning, e.g., a grid or a topological map, of the space where the positioning is being deployed. A major limitation of this approach, however, is that instead of considering spatial similarities in the signal environment, the partitioning is typically based on an uniform division of the space or topological constraints (e.g., rooms and walls). This can significantly decrease positioning accuracy when the signal environment is not sufficiently stable across all partitions. Moreover, current solutions provide no support for identifying partitions that are not compatible with the current wireless deployment. To overcome these limitations, we propose AWESOM (Activations Weighted by the Euclidean-distance using Self-Organizing Maps), a novel measure for automatically creating a discrete partitioning of the space where the WiFi positioning is being deployed. In addition to enabling automatic construction of a discrete partitioning, AWESOM provides a measure for evaluating the goodness of a given partitioning for a particular access point deployment. AWESOM also enables identifying partitions where additional access points should be deployed. We demonstrate the usefulness of AWESOM using data collected from two large scale deployments of a proprietary wireless positioning system in a hypermarket environment.


Grid Cell Access Point Indoor Space Retail Environment Wireless Access Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Personal Communications 4(5), 42–47 (1997)CrossRefGoogle Scholar
  2. 2.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the International Conference on Mobile Computing and Networking (Mobicom), pp. 32–43 (2000)Google Scholar
  3. 3.
    Patel, S.N., Truong, K.N., Abowd, G.D.: PowerLine Positioning: A Practical Sub-Room-Level Indoor Location System for Domestic Use. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 441–458. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Kjærgaard, M.B.: A Taxonomy for Radio Location Fingerprinting. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 139–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Varshavsky, A., Patel, S.: Location in ubiquitous computing. In: Krumm, J. (ed.) Ubiquitous Computing Fundamentals, pp. 285–320. Chapman and Hall/CRC (2010)Google Scholar
  6. 6.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: Proceedings of the 19th Conference on Computer Communications (INFOCOM), vol. 2, pp. 775–784. IEEE Computer Society (2000)Google Scholar
  7. 7.
    Youssef, M., Agrawala, A.: The Horus location determination system. Wireless Networks 14, 357–374 (2008)CrossRefGoogle Scholar
  8. 8.
    Krumm, J., Platt, J.: Minimizing calibration effort for an indoor 802.11 device location measurement system. MSR-TR-2003-82, Microsoft Research, Seattle, WA (2003)Google Scholar
  9. 9.
    Nurmi, P., Bhattacharya, S., Kukkonen, J.: A grid-based algorithm for on-device GSM positioning. In: Proceedings of the 12th International Conference on Ubiquitous Computing (UbiComp), pp. 227–236 (2010)Google Scholar
  10. 10.
    Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical robust localization over large-scale 802.11 wireless networks. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 70–84. ACM (2004)Google Scholar
  11. 11.
    Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., Otsason, V.: GSM indoor localization. Pervasive and Mobile Computing 3, 698–720 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, M.Y., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J., Hughes, J., LaMarca, A., Potter, F., Smith, I., Varshavsky, A.: Practical Metropolitan-Scale Positioning for GSM Phones. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 225–242. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Honkavirta, V., Perälä, T., Löytty, S.A., Piché, R.: A comparative survey of WLAN location fingerprinting methods. In: Proceedings of the 6th Workshop on Positioning, Navigation and Communication (WPNC), pp. 243–251. IEEE (2009)Google Scholar
  14. 14.
    Castro, P., Chiu, P., Kremenek, T., Muntz, R.: A Probabilistic Room Location Service for Wireless Networked Environments. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 18–34. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J.: A probabilistic approach to WLAN user location estimation. International Journal of Wireless Information Networks 9(3), 155–164 (2002)CrossRefGoogle Scholar
  16. 16.
    Krumm, J., Horvitz, E.: LOCADIO: Inferring motion and location from Wi-Fi signal strengths. In: Proceedings of the 1st International Conference on Mobile and Ubiquitous Systems (Mobiquitous), pp. 4–14. IEEE (2004)Google Scholar
  17. 17.
    Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wireless Networks 11, 189–204 (2005)CrossRefGoogle Scholar
  18. 18.
    Hightower, J., Borriello, G.: Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 88–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Letchner, J., Fox, D., LaMarca, A.: Large-scale localization from wireless signal strength. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI), pp. 15–20. AAAI Press (2005)Google Scholar
  20. 20.
    Chai, X., Yang, Q.: Reducing the calibration effort for location estimation using unlabeled samples. In: 3rd IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 95–104. IEEE (2005)Google Scholar
  21. 21.
    Chai, X., Yang, Q.: Reducing the calibration effort for probabilistic indoor location estimation. IEEE Transactions on Mobile Computing 6(6), 649–662 (2007)CrossRefGoogle Scholar
  22. 22.
    Bolliger, P.: Redpin - adaptive, zero-configuration indoor localization through user collaboration. In: Proceedings of the first ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT), pp. 55–60. ACM (2008)Google Scholar
  23. 23.
    Barry, A., Fisher, B., Chang, M.L.: A Long-Duration Study of User-Trained 802.11 Localization. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 197–212. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Park, J., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., Teller, S.J., Ledlie, J.: Growing an organic indoor location system. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys 2010), pp. 271–284 (2010)Google Scholar
  25. 25.
    Koo, J., Cha, H.: Autonomous Construction of a WiFi Access Point Map Using Multidimensional Scaling. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 115–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Pulkkinen, T., Roos, T., Myllymäki, P.: Semi-supervised Learning for WLAN Positioning. In: Honkela, T., Duch, W., Girolami, W., Kaski, S. (eds.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 355–362. Springer, Heidelberg (2011)Google Scholar
  27. 27.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1998)Google Scholar
  28. 28.
    Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personally meaningful places: An interactive clustering approach. ACM Transactions on Information Systems 25(3), 12 (2007)CrossRefGoogle Scholar
  29. 29.
    Bhattacharya, S., Pulkkinen, T., Nurmi, P., Salovaara, A.: Monstre: A mobile navigation system for retail environments. In: International Workshop on Smart Mobile Applications (SmartApps) (2011)Google Scholar
  30. 30.
    Nurmi, P., Salovaara, A., Bhattacharya, S., Pulkkinen, T., Kahl, G.: Influence of landmark-based navigation instructions on user attention in indoor smart spaces. In: Proceedings of the 15th International Conference on Intelligent User Interfaces (IUI), pp. 96–105. ACM Press (2011)Google Scholar
  31. 31.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  32. 32.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Teemu Pulkkinen
    • 1
  • Petteri Nurmi
    • 1
  1. 1.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations