Recognizing Handheld Electrical Device Usage with Hand-Worn Coil of Wire

  • Takuya Maekawa
  • Yasue Kishino
  • Yutaka Yanagisawa
  • Yasushi Sakurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7319)


This paper describes the development of a new finger-ring shaped sensor device with a coil of wire for recognizing the use of handheld electrical devices such as digital cameras, cellphones, electric toothbrushes, and hair dryers by sensing time-varying magnetic fields emitted by the devices. Recently, sensing the usage of home electrical devices has emerged as a promising area for activity recognition studies because we can estimate high-level daily activities by recognizing the use of electrical devices that exist ubiquitously in our daily lives. A feature of our approach is that we can recognize the use of electrical devices that are not connected to the home infrastructure without the need to equip them with sensors. We evaluated the performance of our approach by using sensor data obtained from real houses. We also investigated the portability of training data between different users.


Activity sensing Electrical devices Wearable sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mynatt, E., Rowan, J., Craighill, S., Jacobs, A.: Digital family portraits: Supporting peace of mind for extended family members. In: CHI 2001, pp. 333–340 (2001)Google Scholar
  2. 2.
    Maekawa, T., Yanagisawa, Y., Kishino, Y., Kamei, K., Sakurai, Y., Okadome, T.: Object-blog system for environment-generated content. IEEE Pervasive Computing 7(4), 20–27 (2008)CrossRefGoogle Scholar
  3. 3.
    van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Ubicomp 2008, pp. 1–9 (2008)Google Scholar
  4. 4.
    Philipose, M., Fishkin, K., Perkowitz, M.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3(4), 50–57 (2004)CrossRefGoogle Scholar
  5. 5.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Lester, J., Choudhury, T., Borriello, G.: A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y., Okadome, T.: Object-Based Activity Recognition with Heterogeneous Sensors on Wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 246–264. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Maekawa, T., Watanabe, S.: Unsupervised activity recognition with user’s physical characteristics data. In: Int’l Symp. on Wearable Computers, pp. 89–96 (2011)Google Scholar
  10. 10.
    Kim, Y., Schmid, T., Charbiwala, Z., Srivastava, M.: ViridiScope: design and implementation of a fine grained power monitoring system for homes. In: Ubicomp 2009, pp. 245–254 (2009)Google Scholar
  11. 11.
    Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  12. 12.
    Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Residential Power Line (Nominated for the Best Paper Award). In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 271–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Gupta, S., Reynolds, M., Patel, S.: ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home. In: Ubicomp 2010, pp. 139–148 (2010)Google Scholar
  14. 14.
    Maekawa, T., Kishino, Y., Sakurai, Y., Suyama, T.: Recognizing the Use of Portable Electrical Devices with Hand-Worn Magnetic Sensors. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 276–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lenz, J.: A review of magnetic sensors. Proceedings of the IEEE 78(6), 973–989 (1990)CrossRefGoogle Scholar
  16. 16.
    Lifton, J., Feldmeier, M., Ono, Y., Lewis, C., Paradiso, J.: A platform for ubiquitous sensor deployment in occupational and domestic environments. In: IPSN 2007, pp. 119–127 (2007)Google Scholar
  17. 17.
    Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation of a high-fidelity ac metering network. In: IPSN 2009, pp. 253–264 (2009)Google Scholar
  18. 18.
    Cohn, G., Morris, D., Patel, S.N., Tan, D.S.: Your noise is my command: sensing gestures using the body as an antenna. In: CHI 2011, pp. 791–800 (2011)Google Scholar
  19. 19.
    Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  20. 20.
    Leggetter, C., Woodland, P.: Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Computer Speech & Language 9(2), 171–185 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takuya Maekawa
    • 1
  • Yasue Kishino
    • 2
  • Yutaka Yanagisawa
    • 2
  • Yasushi Sakurai
    • 2
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityJapan
  2. 2.NTT Communication Science LaboratoriesJapan

Personalised recommendations