Numerical Analysis of the Implant – Abutment System

  • Anna Ziębowicz
  • Bohdan Bączkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7339)

Abstract

An important characteristic of dental implants is the configuration of the coupling between implant and abutment. The aim of numerical analysis was calculation of displacements and stresses in an implant system in a function of the applied loading - imitating phenomena in the mouth during mastication. The commonly used internal connection implant complex was modelled in accordance with the geometric designs and scanning electron microscopy observation. Because an excessive stress concentration at the implant-abutment interface is suggested to be critical for the long-term success of implant therapy, the analyses of this aspect can make it possible to evaluate the type of failure of the system and identify its weakest elements. Geometric models of implant systems, were discretized by means of tetrahedron element using the software programs Catia V5.

Keywords

Biomechanical Analysis Maximum Equivalent Stress Oral Implant Marginal Bone Loss Prosthetic Dentistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manz, M.C.: Factors associated with radiographic vertical bone loss around implants placed in a clinical study. Annals of Periodontology 5(1), 137–151 (2000)PubMedCrossRefGoogle Scholar
  2. 2.
    Szewczenko, J.: Electric phenomena in long bones. Przeglad Elektrotechniczny 81(12), 94–97 (2005)Google Scholar
  3. 3.
    Nobel Biocare. Product Catalog (2011)Google Scholar
  4. 4.
    Koeck, B., Wagner, W. (eds.): Implantology, pp. 79–94. Urban & Partner, Wrocław (2004) (in Polish)Google Scholar
  5. 5.
    Marciniak, J.: Biomaterials. Printing House of the Silesian University of Technology, Gliwice (2002) (in Polish)Google Scholar
  6. 6.
    Marciniak, J., Kaczmarek, M., Ziębowicz, A.: Biomaterials in stomatology. Printing House of the Silesian University of Technology, Gliwice (2008) (in Polish)Google Scholar
  7. 7.
    Froum, S.: Dental implant complications: etiology, prevention and treatment. John Wiley & Sons (2011)Google Scholar
  8. 8.
    Black, M.: Colour atlas of dental implant surgery. Elsevier Health Science, e - book (2010)Google Scholar
  9. 9.
    Hadi, S.A., Ashfaq, N., Bey, A., Khan, S.: Biological factors responsible for failure of osseointegration in oral implants. Biology and Medicine 3(2), 164–170 (2011)Google Scholar
  10. 10.
    Georgiev, O., Nogalchev, E.: Local complications occurring during dental implantation. Journal of IMAB - Annual Proceeding (Scientific Papers) 16(4), 35–37 (2010)CrossRefGoogle Scholar
  11. 11.
    Park, J.-C., Yang, K.-B., Choi, Y., Kim, Y.-T., Jung, U.-W., Kim, C.-S., Cho, K.-S., Chai, J.-K., Kim, C.-K., Choi, S.-H.: A simple approach to preserve keratinized mucosa around implants using a pre-fabricated implant-retained stent: a report of two cases. Journal of Periodontal & Implant Science 40(4), 194–200 (2010)CrossRefGoogle Scholar
  12. 12.
    Gita Malathi, K., Ravi Chandra, P.V.: Mechanical complications with implants and implant prostheses. Indian Journal of Dental Advancements 3(2), 555–558 (2011)Google Scholar
  13. 13.
    Hämmerle, C., Sailer, I., Thoma, A.: Dental ceramics - essential aspects for clinical practice, pp. 114–122. Quintessence Pub. (2008)Google Scholar
  14. 14.
    Prestipino, V., Ingler, A.: Esthetic high-strengh implant abutments-esthetic indications. Journal of Esthetic Dentistry 8(6), 255–262 (1996)PubMedCrossRefGoogle Scholar
  15. 15.
    Yildrim, M., Fisher, H., Marx, R.: In vivo fracture resistance of implant supported all-ceramic restorations. Journal of Prosthetic Dentistry 90(4), 325–331 (2003)CrossRefGoogle Scholar
  16. 16.
    Kohal, R., Att, W., Bahle, M.: Ceramic abutments and ceramic oral implants. An Update. Periodontology 47, 224–243 (2000)CrossRefGoogle Scholar
  17. 17.
    Mierzwińska-Nastalska, E., Szczyrek, P.: Ceramic restorations - clinical and laboratory procedures. Med. Tour Press International Warsaw (2011) (in Polish)Google Scholar
  18. 18.
    Spiechowicz, E.: Stomatology prosthetic, pp. 570–572. PZWL Warsaw (2008) (in Polish)Google Scholar
  19. 19.
    Kelly, J.R., Nishimura, I., Campbell, S.D.: Ceramics in dentistry: Historical roots and current perspectives. Journal of Prosthetic Dentistry 75(1), 18–32 (1996)PubMedCrossRefGoogle Scholar
  20. 20.
    Wohlwend, A., Studer, S., Sharer, P.: Das zirkonoxid abutment - ein neues vollkeramisches Konzept zur aesthetischen Verbesserung der suprastruktur in der Implantologie. Quintessenz Zantech 22, 364–381 (1996)Google Scholar
  21. 21.
    Guess, P.C., Att, W., Strub, J.R.: Zirconia in fixed implant prosthodontics, December 22. Clinical Implant Dentistry and Related Research, pp. 1–13. Wiley Periodicals Inc. (2010)Google Scholar
  22. 22.
    ISO 5832-2. Implants for surgery - Metallic materials. Unalloyed titanium (1996)Google Scholar
  23. 23.
    ISO 13356. Implants for surgery - Ceramic materials based on yttria-stabilized tetragonal zirconia, Y-TZP (2008)Google Scholar
  24. 24.
    ISO 14801. Dentistry - Implants - Dynamic fatigue test for endosseous dental implants (2007)Google Scholar
  25. 25.
    Walke, W., Marciniak, J., Paszenda, Z., Kaczmarek, M., Cieplak, J.: Biomechanical behaviour of double threaded screw in tibia fixation. In: Information Technologies in Biomedicine. Advances in Soft Computing, vol. 47, pp. 521–528. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Kajzer, W., Krauze, A., Kaczmarek, M., Marciniak, J.: FEM analysis of the expandable intramedullar nail. Advances in Soft Computing 47, 537–544 (2008)CrossRefGoogle Scholar
  27. 27.
    Kiel, M., Marciniak, J., Szewczenko, J., Basiaga, M., Wolański, W.: Biomechanical analysis of plate stabilization on cervical part of spine. Archives of Materials Science and Engineering 38(1), 41–47 (2009)Google Scholar
  28. 28.
    Pessoa, R.S., Vaz, L.G., Marcantonio Jr., E., Vander Sloten, J., Duyck, J., Jaecques, S.V.: Biomechanical evaluation of platform switching in different implant protocols: computed tomography-based three-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants 25, 911–919 (2010)PubMedGoogle Scholar
  29. 29.
    Cochran, D.L., Bosshardt, D.D., Grize, L., Higginbottom, F.L., Jones, A.A., Jung, R.E., Wieland, M., Dard, M.: Bone response to loaded implants with non-matching implant-abutment diameters in the canine mandible. Journal of Periodontology 80, 609–617 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anna Ziębowicz
    • 1
  • Bohdan Bączkowski
    • 2
  1. 1.Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Department of Prosthetic DentistryMedical University of WarsawWarsawPoland

Personalised recommendations