Blog Distillation via Sentiment-Sensitive Link Analysis

  • Giacomo Berardi
  • Andrea Esuli
  • Fabrizio Sebastiani
  • Fabrizio Silvestri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)

Abstract

In this paper we approach blog distillation by adding a link analysis phase to the standard retrieval-by-topicality phase, where we also we check whether a given hyperlink is a citation with a positive or a negative nature. This allows us to test the hypothesis that distinguishing approval from disapproval brings about benefits in blog distillation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argamon, S., Bloom, K., Esuli, A., Sebastiani, F.: Automatically Determining Attitude Type and Force for Sentiment Analysis. In: Vetulani, Z., Uszkoreit, H. (eds.) LTC 2007. LNCS, vol. 5603, pp. 218–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of LREC 2010 (2010)Google Scholar
  3. 3.
    Haveliwala, T.H.: Topic-sensitive PageRank: A context-sensitive ranking algorithm for Web search. IEEE TKDE 15(4), 784–796 (2003)Google Scholar
  4. 4.
    Macdonald, C., Santos, R.L., Ounis, I., Soboroff, I.: Blog Track research at TREC. SIGIR Forum 44(1), 58–75 (2010)CrossRefGoogle Scholar
  5. 5.
    Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A high performance and scalable information retrieval platform. In: Proceedings of the SIGIR 2006 Workshop on Open Source Information Retrieval, Seattle, US (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giacomo Berardi
    • 1
  • Andrea Esuli
    • 1
  • Fabrizio Sebastiani
    • 1
  • Fabrizio Silvestri
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’InformazioneConsiglio Nazionale delle RicerchePisaItaly

Personalised recommendations