User-Driven Automatic Resource Retrieval Based on Natural Language Request

  • Edgar Camilo Pedraza
  • Julián Andrés Zúñiga
  • Luis Javier Suarez-Meza
  • Juan Carlos Corrales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7337)


In this paper we propose an innovative approach for User-driven retrieval of Telecom and IT resources over converged environments, which brings together traditional NLP techniques with search and selection process based on lightweight semantic technologies, aimed at ordinary end users. The preliminary experiments show promising results in contrast to traditional approaches.


Telecom and IT resources NLP Techniques User-driven retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sari, S.W.: Diversity of the mashup ecosystem. In: WEBIST, Noordewijkerhout, The Netherlands (May 2011)Google Scholar
  2. 2.
    Tapia, B., Torres, R., Astudillo, H.: Simplifying mashup component selection with a combined similarity- and social-based technique. In: Mashups 2011, pp. 8:1–8:8. ACM, New York (2011)Google Scholar
  3. 3.
    Pop, F.-C., Cremene, M., Vaida, M.-F., Riveill, M.: On-demand service composition based on natural language requests. In: WONS 2009, pp. 41–44. IEEE Press, Piscataway (2009)Google Scholar
  4. 4.
    Carlin, J.M.E., Trinugroho, Y.B.D.: A flexible platform for provisioning telco services in web 2.0 environments. In: NGMAST 2010, pp. 61–66. IEEE Computer Society, Washington, DC (2010)Google Scholar
  5. 5.
    Pedraza, E.C., Zuniga, J.A., Suarez Meza, L.J., Corrales, J.C.: Automatic service retrieval in converged environments based on natural language request. In: SERVICE COMPUTATION 2011, Rome, Italy, September 25, pp. 52–56 (2011) 978-1-61208-152-6Google Scholar
  6. 6.
    Bond, G., Cheung, E., Fikouras, I., Levenshteyn, R.: Unified telecom and web services composition: problem definition and future directions. In: IPTComm 2009, pp. 13:1–13:12. ACM, New York (2009)Google Scholar
  7. 7.
    Kirati, S.: A demonstration on service compositions based on natural language request and user contexts. Master’s thesis, Norwegian University of Science and Technology (NTNU), Department of Telematics (June 2008)Google Scholar
  8. 8.
    Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A folksonomy-based model of web services for discovery and automatic composition. In: Proceedings of the 2008 IEEE International Conference on Services Computing, vol. 1, pp. 389–396. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  9. 9.
    Helic, D., Strohmaier, M., Trattner, C., Muhr, M., Lerman, K.: Pragmatic evaluation of folksonomies. In: WWW 2011, pp. 417–426. ACM, New York (2011)Google Scholar
  10. 10.
    Cunningham, H.: Jape: a java annotation patterns engine. Research Memorandum CS – 99 – 06, Department of Computer Science, University of Sheffield (May 1999)Google Scholar
  11. 11.
    Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: SIGDOC 1986, pp. 24–26. ACM, New York (1986)CrossRefGoogle Scholar
  12. 12.
    Sun, B.: Named entity recognition: Evaluation of existing systems (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Edgar Camilo Pedraza
    • 1
  • Julián Andrés Zúñiga
    • 1
  • Luis Javier Suarez-Meza
    • 1
  • Juan Carlos Corrales
    • 1
  1. 1.Grupo de Ingeniería Telemática (GIT)Universidad del CaucaPopayánColombia

Personalised recommendations