Codeco: A Practical Notation for Controlled English Grammars in Predictive Editors

  • Tobias Kuhn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7175)

Abstract

This paper introduces a new grammar notation, called Codeco, designed for controlled natural language (CNL) and predictive editors. Existing grammar frameworks that target either formal or natural languages do not work out particularly well for CNL, especially if they are to be used in predictive editors and if anaphoric references should be resolved in a deterministic way. It is not trivial to build predictive editors that can precisely determine which anaphoric references are possible at a certain position. This paper shows how such complex structures can be represented in Codeco, a novel grammar notation for CNL. Two different parsers have been implemented (one in Prolog and another one in Java) and a large subset of Attempto Controlled English (ACE) has been represented in Codeco. The results show that Codeco is practical, adequate and efficient.

Keywords

Noun Phrase Syntax Tree Grammar Rule Java Implementation Evaluation Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Chomsky, N.: On binding. Linguistic Inquiry 11(1), 1–46 (1980)Google Scholar
  3. 3.
    Clark, P., Chaw, S.-Y., Barker, K., Chaudhri, V., Harrison, P., Fan, J., John, B., Porter, B., Spaulding, A., Thompson, J., Yeh, P.: Capturing and answering questions posed to a knowledge-based system. In: K-CAP 2007: Proceedings of the 4th International Conference on Knowledge Capture, pp. 63–70. ACM (2007)Google Scholar
  4. 4.
    Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.H.: Acquiring and using world knowledge using a restricted subset of English. In: Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2005), pp. 506–511. AAAI Press (2005)Google Scholar
  5. 5.
    Cole, R., Mariani, J., Uszkoreit, H., Varile, G.B., Zaenen, A., Zampolli, A., Zue, V. (eds.): Survey of the State of the Art in Human Language Technology. Cambridge University Press (1997)Google Scholar
  6. 6.
    Dahl, V., Tarau, P., Li, R.: Assumption grammars for processing natural language. In: Naish, L. (ed.) Proceedings of the Fourteenth International Conference on Logic Programming, pp. 256–270. MIT Press (1997)Google Scholar
  7. 7.
    Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM 13(2), 94–102 (1970)MATHCrossRefGoogle Scholar
  8. 8.
    Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 104–124. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.: CLOnE: Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Johnson, S.C.: Yacc: Yet another compiler-compiler. Computer Science Technical Report 32, Bell Laboratories, Murray Hill, NJ, USA (July 1975)Google Scholar
  11. 11.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of Computer and System Sciences 10(1), 136–163 (1975)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kaljurand, K.: Paraphrasing controlled English texts. In: Pre-Proceedings of the Workshop on Controlled Natural Language (CNL 2009). CEUR Workshop Proceedings, vol. 448, CEUR-WS (April 2009)Google Scholar
  13. 13.
    Kaplan, R.M., Bresnan, J.: Lexical-functional grammar: A formal system for grammatical representation. In: Bresnan, J. (ed.) The Mental Representation of Grammatical Relations, pp. 173–281. MIT Press (1982)Google Scholar
  14. 14.
    Knuth, D.E.: Backus normal form vs. backus naur form. Communications of the ACM 7(12), 735–736 (1964)CrossRefGoogle Scholar
  15. 15.
    Kuhn, T.: How controlled English can improve semantic wikis. In: Proceedings of the Forth Semantic Wiki Workshop (SemWiki 2009). CEUR Workshop Proceedings, vol. 464, CEUR-WS (2009)Google Scholar
  16. 16.
    Kuhn, T.: Codeco: A grammar notation for controlled natural language in predictive editors. In: Pre-Proceedings of the Second Workshop on Controlled Natural Languages (CNL 2010). CEUR Workshop Proceedings, vol. 622, CEUR-WS (2010)Google Scholar
  17. 17.
    Kuhn, T.: Controlled English for Knowledge Representation. PhD thesis, Faculty of Economics, Business Administration and Information Technology of the University of Zurich (2010)Google Scholar
  18. 18.
    Kuhn, T., Schwitter, R.: Writing support for controlled natural languages. In: Proceedings of the Australasian Language Technology Association Workshop 2008, pp. 46–54 (December 2008)Google Scholar
  19. 19.
    Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Computational Linguistics 20(4), 535–561 (1994)Google Scholar
  20. 20.
    Martin, P.: Knowledge Representation in CGLF, CGIF, KIF, Frame-CG and Formalized-English. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 77–91. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Naur, P., Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perils, A.J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden, A., Woodger, M.: Revised report on the algorithmic language ALGOL 60. Communications of the ACM 6(1), 1–17 (1963)CrossRefGoogle Scholar
  22. 22.
    Pereira, F., Warren, D.H.D.: Definite clause grammars for language analysis. In: Readings in Natural Language Processing, pp. 101–124. Morgan Kaufmann Publishers (1986)Google Scholar
  23. 23.
    Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. Studies in Contemporary Linguistics. Chicago University Press (1994)Google Scholar
  24. 24.
    Power, R., Stevens, R., Scott, D., Rector, A.: Editing OWL through generated CNL. In: Pre-Proceedings of the Workshop on Controlled Natural Language (CNL 2009). CEUR Workshop Proceedings, vol. 448, CEUR-WS (April 2009)Google Scholar
  25. 25.
    Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A comparison of three controlled natural languages for OWL 1.1. In: Proceedings of the Fourth OWLED Workshop on OWL: Experiences and Directions. CEUR Workshop Proceedings, vol. 496, CEUR-WS (2008)Google Scholar
  26. 26.
    Schwitter, R., Ljungberg, A., Hood, D.: ECOLE — a look-ahead editor for a controlled language. In: Controlled Translation — Proceedings of the Joint Conference Combining the 8th International Workshop of the European Association for Machine Translation and the 4th Controlled Language Application Workshop (EAMT-CLAW 2003), Ireland, pp. 141–150. Dublin City University (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tobias Kuhn
    • 1
    • 2
  1. 1.Department of Informatics & Institute of Computational LinguisticsUniversity of ZurichSwitzerland
  2. 2.Department of Intelligent Computer SystemsUniversity of MaltaMalta

Personalised recommendations