Biodegradable Metals: State of the Art

  • Hendra Hermawan
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


Degradable biomaterials constitute a novel class of bioactive biomaterials which are expected to support healing process of a diseased tissue and to degrade thereafter. Two classes of metals have been proposed: magnesium- and iron-based alloys. Three targeted applications are envisaged: orthopaedic, cardiovascular and pediatric implants. Conceptually, biodegradable metals should provide a temporary support on healing process and should progressively degrade thereafter.


Biodegradable metals Degradation Temporary implant 


  1. ASM (2005) ASM handbook, vol 2: Properties and selection: nonferrous alloys & special purpose materials. ASM International, Materials ParkGoogle Scholar
  2. ASTM (2001) ASTM B 80: standard specification for magnesium-alloy sand castings. ASTM International, West ConshohockenGoogle Scholar
  3. ASTM (2003) ASTM F 138: standard specification for wrought 18chromium-14nickel-2.5molybdenum stainless steel bar and wire for surgical implants (UNS S31673). ASTM International, West ConshohockenGoogle Scholar
  4. Chen S, Guan S, Li W, Wang H, Chen J, Wang Y (2012) In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition. J Biomed Mater Res B 100:533–543Google Scholar
  5. Chng CB, Lau DP, Choo JQ, Chui CK (2012) Bio-absorbable micro-clip for laryngeal microsurgery—design and evaluation. Acta Biomater. doi: 10.1016/j.actbio.2012.1003.1051 Google Scholar
  6. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R (2004) Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 17:391–395CrossRefGoogle Scholar
  7. El-Omar MM, Dangas G, Iakovou I, Mehran R (2001) Update on in-stent restenosis. Curr Interv Cardiol Rep 3:296–305Google Scholar
  8. Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A (2011) Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater 7:1421–1428CrossRefGoogle Scholar
  9. Goodfellow (2010) Iron (Fe)—material information (2010) Goodfellow Corp. Accessed 5 December 2010
  10. Hänzi AC, Sologubenko AS, Uggowitzer PJ (2009) Design strategy for microalloyed ultra-ductile magnesium alloys for medical applications. Mater Sci Forum 618–619:75–82CrossRefGoogle Scholar
  11. Hänzi AC, Metlar A, Schinhammer M, Aguib H, Lüth TC, Löffler JF, Uggowitzer PJ (2011) Biodegradable wound-closing devices for gastrointestinal interventions: degradation performance of the magnesium tip. Mater Sci Eng C 31:1098–1103CrossRefGoogle Scholar
  12. Hermawan H, Mantovani D (2009) Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207–216Google Scholar
  13. Hermawan H, Mantovani D (2011) New generation of medical implants: metallic biodegradable coronary stent. In: 2nd international conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME), Bandung, 8–9 November 2011, pp 399–402Google Scholar
  14. Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron-manganese: new class of degradable metallic biomaterials prepared by powder metallurgy. Powder Metall 51:38–45CrossRefGoogle Scholar
  15. Hermawan H, Dube D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6:1693–1697CrossRefGoogle Scholar
  16. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology. Heart 89:651–656CrossRefGoogle Scholar
  17. Kannan MB, Raman RKS (2008) In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 29:2306–2314CrossRefGoogle Scholar
  18. Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8:1230–1238CrossRefGoogle Scholar
  19. Levesque J, Dube D, Fiset M, Mantovani D (2003) Investigation of corrosion behaviour of magnesium alloy AM60B-F under pseudo-physiological conditions. Mater Sci Forum 426–432:521–526CrossRefGoogle Scholar
  20. Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg-Ca alloys for use as biodegradable materials within bones. Biomaterials 29:1329–1344CrossRefGoogle Scholar
  21. Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B (2005) Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 12:1–5CrossRefGoogle Scholar
  22. Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G (2001) A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569CrossRefGoogle Scholar
  23. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, Schnakenburg CV (2006) Long term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962CrossRefGoogle Scholar
  24. Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713CrossRefGoogle Scholar
  25. Schomig A, Kastrati A, Mudra H, Blasini R, Schuhlen H, Klauss V, Richardt G, Neumann FJ (1994) Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 90:2716–2724CrossRefGoogle Scholar
  26. Serruys PW, Kutryk MJ, Ong AT (2006) Coronary-artery stents. N Engl J Med 354:483–495CrossRefGoogle Scholar
  27. Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, Tcheng JE, Greenfield JC Jr (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24FCrossRefGoogle Scholar
  28. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404CrossRefGoogle Scholar
  29. United States Patent and Trademark Office (2011). Accessed 30 Oct 2011
  30. US National Library of Medicine and the National Institutes of Health (2011). Accessed 30 Oct 2011
  31. van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruys PW, Holmes DR Jr, Ellis SG, Topol EJ (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697CrossRefGoogle Scholar
  32. Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann K-H, Haverich A (2006) Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 68:606–617Google Scholar
  33. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20CrossRefGoogle Scholar
  34. Witte F, Kaese V, Haferkamp H, Switzer E, Linderberg AM, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563CrossRefGoogle Scholar
  35. Xin Y, Liu C, Zhang X, Tang G, Tian X, Chu PK (2007) Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J Mater Res 22:2004–2011CrossRefGoogle Scholar
  36. Zhang E, Yang L (2008) Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application. Mater Sci Eng, A 497:111–118CrossRefGoogle Scholar
  37. Zhang E, Xu L, Yu G, Pan F, Yang K (2009) In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A 90:882–893Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Faculty of Biomedical Engineering and Health ScienceUniversiti Teknologi MalaysiaJohorMalaysia

Personalised recommendations