Occupational Exposure: With Special Reference to Skin Doses in Hands and Fingers

  • Adela Carnicer
  • Mercè Ginjaume
  • Marta Sans-Merce
  • Laurent Donadille
  • Ilona Barth
  • Filip Vanhavere
Chapter

Abstract

Nuclear medicine involves the handling of unsealed radiation sources. Occupational monitoring in nuclear medicine thus includes assessment of both external irradiation of the body and internal exposure due to inhalation or ingestion of radioactive substances. However, when appropriate radiation protection measures are applied, the annual effective dose of nuclear medicine staff is low (around 2–3 mSv). However, hand doses can be very high and even exceed the regulatory limit for skin equivalent dose, without workers being aware of it.

This chapter provides an overview of basic concepts, regulation, and problems associated with occupational monitoring in nuclear medicine. It presents the main results of the FP7 European Project, ORAMED, within the field of extremity dosimetry of nuclear medicine staff and proposes recommendations in order to improve radiation protection in occupational exposure in nuclear medicine.

Keywords

Monte Carlo Radiation Protection Annual Effective Dose Skin Dose Nondominant Hand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vanhavere F, Carinou E, Donadille L, Ginjaume M, Jankowski J, Rimpler A, Sans Merce M (2008) An overview on extremity dosimetry in medical applications. Radiat Prot Dosim 129(1–3):350–355CrossRefGoogle Scholar
  2. 2.
    Donadille L, Carinou E, Ginjaume M, Jankowski J, Rimpler A, Sans-Merce M, Vanhavere F (2008) An overview of the use of extremity dosemeters in some European countries for medical applications. Radiat Prot Dosim 131(1):62–66CrossRefGoogle Scholar
  3. 3.
    International Commission on Radiological Protection (1991) Recommendations of the international commission on radiological protection. ICRP publication 60. Ann ICRP 21(1–3)Google Scholar
  4. 4.
    International Commission on Radiological Protection (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 37(2–4)Google Scholar
  5. 5.
    International Commission on Radiation Units and Measurements (1992) Measurements of dose equivalents from external photon and electron radiations, ICRU report 47. International Commission on Radiation Units and Measurements, Bethesda, MarylandGoogle Scholar
  6. 6.
    International Commission on Radiation Units and Measurements (1993) “Quantities and units in radiation protection dosimetry”, ICRU report 51. International Commission on Radiation Units and Measurements, Bethesda, MarylandGoogle Scholar
  7. 7.
    European Commission (1996) Council directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiations. Off J Eur Commun 39L:159Google Scholar
  8. 8.
    European Commission (2011) Proposal for a COUNCIL DIRECTIVE laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. Draft presented under Article 31 Euratom Treaty for the opinion of the European Economic and Social Committee. http://ec.europa.eu/energy/nuclear/radiation_protection/doc/com_2011_0593.pdf
  9. 9.
    Baechler S, Stritt N, Bochud FO (2011) Individual monitoring of internal exposure for nuclear medicine workers in Switzerland. Radiat Prot Dosim 144(1–4):464–467CrossRefGoogle Scholar
  10. 10.
    International Commission on Radiation Units and Measurements (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU report 44. International Commission on Radiation Units and Measurements, Bethesda, MarylandGoogle Scholar
  11. 11.
    Frasch G, Petrova K (2007) Dose trends in occupational radiation exposure in Europe results from the ESOREX project. Radiat Prot Dosim 125(1–4):121–126Google Scholar
  12. 12.
    International Atomic Energy Agency. IAEA training material on radiation protection in PET/CT. Lecture 8 on staff and public doses. http://rpop.iaea.org
  13. 13.
    Whitby M, Martin C (2003) Investigation using an advanced extremity gamma instrumentation system of options for shielding the hand during the preparation and injection of radiopharmaceuticals. J Radiol Prot 23:79–96PubMedCrossRefGoogle Scholar
  14. 14.
    Sans-Merce M, Ruiz N, Barth I, Carnicer A, Donadille L, Ferrari P, Fulop M, Ginjaume M, Gualdrini G, Krim S, Mariotti F, Ortega X, Rimpler A, Vanhavere F, Baechler S (2011) Recommendations to reduce hand exposure for standard nuclear medicine procedures. Radiat Meas 46(11):1330–1333CrossRefGoogle Scholar
  15. 15.
    Ferrari P, Sans-Merce M, Carnicer A, Donadille L, Fulop M, Ginjaume M, Gualdrini G, Mariotti F, Ruiz N (2011) Main results of the Monte Carlo studies carried out for nuclear medicine practices within the ORAMED project. Radiat Meas 46(11):1287–1290CrossRefGoogle Scholar
  16. 16.
    Carnicer A, Ginjaume M, Duch MA, Vanhavere F, Sans-Merce M, Baechler S, Barth I, Donadille L, Ferrari P, Fulop M, Gualdrini G, Krim S, Mariotti F, Ortega X, Rimpler A, Ruiz N, Olko P (2011) The use of different types of thermoluminescent dosemeters to measure extremity doses in nuclear medicine. Radiat Meas 46(12):1835–1838CrossRefGoogle Scholar
  17. 17.
    Vanhavere F, Berus D, Buls N, Covens P (2006) The use of extremity dosemeters in a hospital environment. Radiat Prot Dosim 118(2):190–195CrossRefGoogle Scholar
  18. 18.
    Covens P, Berus D, Vanhavere F, Caveliers V (2010) The introduction of automated dispensing and injection during PET procedures: a step in the optimization of extremity doses and whole-body doses of nuclear medicine staff. Radiat Prot Dosim 140(3):250–258CrossRefGoogle Scholar
  19. 19.
    Martin C, Whitby M (2003) Application of ALARP to extremity doses for hospital workers. J Radiol Prot 23:405–421PubMedCrossRefGoogle Scholar
  20. 20.
    Mebhah D, Djeffal S, Badreddine A, Medjahed M (1993) Extremity dosimetry in nuclear medicine services using thermoluminescent detectors. Radiat Prot Dosim 47(1/4):439–443Google Scholar
  21. 21.
    Jankowski J, Olszewski J, Kluska K (2003) Distribution of equivalent doses to skin of the hands of nuclear medicine personnel. Radiat Prot Dosim 106(2):177–180CrossRefGoogle Scholar
  22. 22.
    International Commission on Radiological Protection (2008) Radiation dose to patients from radiopharmaceuticals—addendum 3 to ICRP publication 53. ICRP publication 106. Ann ICRP 38 (1–2) (Annex E: Radiation exposure of hands in radiopharmacies: monitoring of doses and optimisation of protection. International Commission on Radiological Protection)Google Scholar
  23. 23.
    Carnicer A, Sans-Merce M, Baechler S, Barth I, Donadille L, Ferrari P, Fulop M, Ginjaume M, Gualdrini G, Krim S, Mariotti M, Ortega X, Rimpler A, Ruiz N, Vanhavere F (2011) Hand exposure in diagnostic nuclear medicine with 18F and 99mTc-labelled radiopharmaceuticals—results of the ORAMED project. Radiat Meas 46(11):1277–1282CrossRefGoogle Scholar
  24. 24.
    Rimpler A, Barth I, Ferrari P, Baechler S, Carnicer A, Donadille L, Fulop M, Ginjaume M, Mariotti M, Sans-Merce M, Gualdrini G, Krim S, Ortega X, Ruiz N, Vanhavere F (2011) Extremity exposure in nuclear medicine therapy with 90Y-labelled substances -results of the ORAMED project. Radiat Meas 46(11):1283–1286CrossRefGoogle Scholar
  25. 25.
    Rimpler A, Barth I, Baum R, Senftleben S, Geworski L (2008) Beta radiation exposure of staff during and after therapies with 90Y-labelled substances. Radiat Prot Dosim 131(1):73–79CrossRefGoogle Scholar
  26. 26.
    Montgomery A, Anstee D, Martin C, Hilditch T (1999) Reductions in finger doses for radiopharmaceutical dispensing afforded by a syringe shield in an automatic dose dispenser. Nucl Med Commun 20:189–194PubMedCrossRefGoogle Scholar
  27. 27.
    Tsopelas C, Collins P, Blefari C (2003) A simple and effective technique to reduce staff exposure during the preparation of radiopharmaceuticals. J Nucl Med Technol 31:37–40PubMedGoogle Scholar
  28. 28.
    Whitby M, Martin C (2005) A multi-centre study of dispensing methods and hand doses in UK hospital radiopharmacies. Nucl Med Commun 26:49–60PubMedCrossRefGoogle Scholar
  29. 29.
    Jansson B, Olsson S, Olsson B, Jönsson L (2011) Reduction of the absorbed dose to technologists fingers from PET-radionuclides using an automatic injection robot. EANM Annual Congress of the European association of nuclear medicineGoogle Scholar
  30. 30.
    Allen S, Mackenzie A, Stark G, Inwards G, Lazarus C, Bachelor S (1997) Comparison of radiation safety aspects between robotic and manual systems for the preparation of radiopharmaceuticals. Nucl Med Commun Abstract 18: 295Google Scholar
  31. 31.
    Hilditch T, Elliot A, Anstee D (1990) Fifteen years of radiological protection experience in a regional radiopharmacy. Health Phys 59(1):109–116PubMedCrossRefGoogle Scholar
  32. 32.
    Carinou E, Donadille L, Ginjaume M, Jankowski J, Rimpler A, Sans-Merce M, Vanhavere F, Denoziere M, Daures J, Bordy J, Itie C, Covens P (2008) Intercomparison on measurements of the quantity personal dose equivalent, H p(0.07), by extremity ring dosimeters in medical fields. Radiat Meas 43:565–570CrossRefGoogle Scholar
  33. 33.
    Ginjaume M, Perez S, Duch M, Ortega X (2008) Comparison of TLD-100 and MCP-Ns for use as an extremity dosemeter for PET nuclear medicine staff. Radiat Meas 43(2–6):607–610CrossRefGoogle Scholar
  34. 34.
    Brasik N, Stadtmann H, Kindl P (2007) The right choice: extremity dosemeter for different radiation fields. Radiat Prot Dosim 125(1–4):331–334Google Scholar
  35. 35.
    Wrzesien M, Olszewski J, Jankowski J (2008) Hand exposure to ionising radiation of Nuclear medicine workers. Radiat Prot Dosim 130(3):325–330CrossRefGoogle Scholar
  36. 36.
    Covens P, Berus D, Buls N, Clerinx P, Vanhavere F (2007) Personal dose monitoring in hospitals: global assessment, critical applications and future needs. Radiat Prot Dosim 124(3):250–259CrossRefGoogle Scholar
  37. 37.
    Tandon P, Venkatesh M, Bhatt B (2007) Extremity dosimetry for radiation workers handling radionuclides in nuclear medicine departments in India. Health Phys 92(2):112–118PubMedCrossRefGoogle Scholar
  38. 38.
    Leide-Svegborn S (2010) Radiation exposure of patients and personnel from a PET/CT procedure with (18)F-FDG. Radiat Prot Dosim 139(1–3):208–213CrossRefGoogle Scholar
  39. 39.
    Geworski L, Zöphel K, Rimpler A, Barth I, Lassmann M, Sandrock D, Zander A, Halm T, Hänscheid H, Hofmann M, Reiners C, Munz D (2006) Radiation exposure in 90Y-Zevalin therapy: results of a prospective multicentre trial. Nuklearmedizin 45(2):82–86PubMedGoogle Scholar
  40. 40.
    Cremonesi M, Ferrari M, Paganelli G, Rossi A, Chinol M, Bartolomei M, Prisco G, Tosi G (2006) Radiation protection in radionuclide therapies with 90Y-conjugates: risks and safety. Eur J Nucl Med Mol Imag 33:1321–1327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adela Carnicer
    • 1
  • Mercè Ginjaume
    • 1
  • Marta Sans-Merce
    • 2
  • Laurent Donadille
    • 3
  • Ilona Barth
    • 4
  • Filip Vanhavere
    • 5
  1. 1.Universitat Politecnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Institut de RadiophysiqueUniversity Hospital Center (CHUV), University of LausanneLausanneSwitzerland
  3. 3.Institut de Radioprotection et de Sûreté Nucléaire (IRSN)Fontenay-aux-RosesFrance
  4. 4.Bundesamt für Strahlenschutz (BfS)BerlinGermany
  5. 5.Belgian Nuclear Research Centre (SCK-CEN)MolBelgium

Personalised recommendations