Deterministic Parameterized Connected Vertex Cover

  • Marek Cygan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


In the Connected Vertex Cover problem we are given an undirected graph G together with an integer k and we are to find a subset of vertices X of size at most k, such that X contains at least one end-point of each edge and such that X induces a connected subgraph. For this problem we present a deterministic algorithm running in O(2 k poly(n)) time and polynomial space, improving over the previous-best O(2.4882 k poly(n)) time deterministic algorithm and O(2 k poly(n)) time randomized algorithm. Furthermore, when usage of exponential space is allowed, we present an O(2 k k(n + m)) time algorithm that solves a more general variant with real weights.

Finally, we show that in O(2 k poly(n)) time and space one can count the number of connected vertex covers of size at most k, and this time upper bound can not be improved to O((2 − ε) k poly(n)) for any ε > 0 under the Strong Exponential Time Hypothesis, as shown by Cygan et al. [CCC’12].


Vertex Cover Deterministic Algorithm Connected Subgraph Steiner Tree Problem Polynomial Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binkele-Raible, D.: Amortized Analysis of Exponential Time and Parameterized Algorithms: Measure and Conquer and Reference Search Trees. PhD thesis, University of Trier (2010)Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the tutte polynomial in vertex-exponential time. In: FOCS, pp. 677–686 (2008)Google Scholar
  3. 3.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. In: CCC (to appear, 2012)Google Scholar
  5. 5.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Ostrovsky, R. (ed.) FOCS, pp. 150–159. IEEE (2011)Google Scholar
  6. 6.
    Cygan, M., Pilipczuk, M.: Faster Exact Bandwidth. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 101–109. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40-42), 3701–3713 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut Parameterized above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: Complexity and algorithms. J. Discrete Algorithms 7(2), 149–167 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Generalized Vertex Cover Problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Mölle, D., Richter, S., Rossmanith, P.: Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 270–280. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algorithms for connected vertex cover and tree cover. Theory Comput. Syst. 43(2), 234–253 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Nederlof, J.: Fast polynomial-space algorithms using mobius inversion: Improving on Steiner Tree and related problems. Algorithmica (page to appear)Google Scholar
  16. 16.
    Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ramanujan, M.S., Raman, V., Saurabh, S., Narayanaswamy, N.S.: LP can be a cure for parameterized problems. In: STACS, pp. 338–349 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Cygan
    • 1
  1. 1.IDSIA, University of LuganoSwitzerland

Personalised recommendations