A Simple Framework for the Generalized Nearest Neighbor Problem

  • Tomas Hruz
  • Marcel Schöngens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

The problem of finding a nearest neighbor from a set of points in ℝd to a complex query object has attracted considerable attention due to various applications in computational geometry, bio-informatics, information retrieval, etc. We propose a generic method that solves the problem for various classes of query objects and distance functions in a unified way. Moreover, for linear space requirements the method simplifies the known approach based on ray-shooting in the lower envelope of an arrangement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P., Sharir, M.: Arrangements and their Applications. Handbook of Computational Geometry, pp. 49–119 (1998)Google Scholar
  2. 2.
    Agarwal, P.K., Matoušek, J.: On Range Searching with Semialgebraic Sets. Discrete and Computational Geometry 11(1), 393–418 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T.M.: Optimal Partition Trees. In: SCG 2010: Proceedings of the 2010 Annual Symposium on Computational Geometry, pp. 1–10. ACM (2010)Google Scholar
  4. 4.
    Chazelle, B.: The Discrepancy Method. Cambridge University Press (2000)Google Scholar
  5. 5.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete and Computational Geometry 4(1), 467–489 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cole, R., Yap, C.-K.: Geometric Retrieval Problems. In: FOCS 1983: Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science, pp. 112–121 (1983)Google Scholar
  7. 7.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry - Algorithms and Applications, 2nd edn. Springer (2000)Google Scholar
  8. 8.
    Haussler, D., Welzl, E.: Epsilon-nets and Simplex Range Queries. In: SCG 1986: Proceedings of the 2nd Annual Symposium on Computational Geometry, p. 71. ACM (1986)Google Scholar
  9. 9.
    Krauthgamer, R., Lee, J.: Navigating Nets: Simple Algorithms for Proximity Search. In: SODA 2004: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807. ACM (2004)Google Scholar
  10. 10.
    Matoušek, J.: Construction of epsilon-Nets. Discrete & Computational Geometry 5, 427–448 (1990)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Matoušek, J.: Efficient Partition Trees. Discrete and Computational Geometry 8(1), 315–334 (1992)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Matoušek, J.: Geometric Discrepancy. Springer (1999)Google Scholar
  13. 13.
    Matoušek, J., Schwarzkopf, O.: On Ray shooting in Convex Polytopes. Discrete and Computational Geometry 10(1), 215–232 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Megiddo, N.: Applying Parallel Computation Algorithms in the Design of Serial Algorithms. Journal of the ACM 30(4), 852–865 (1983)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mitra, P., Chaudhuri, B.B.: Efficiently computing the closest point to a query line. Pattern Recognition Letters 19(11), 1027–1035 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Mitra, P., Mukhopadhyay, A.: Computing a Closest Point to a Query Hyperplane in Three and Higher Dimensions. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 787–796. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mitra, P., Mukhopadhyay, A., Rao, S.V.: Computing the Closest Point to a Circle. In: CCCG 2003: Proceedings of the 15th Canadian Conference on Computational Geometry, pp. 132–135 (2003)Google Scholar
  18. 18.
    Mukhopadhyay, A.: Using simplicial partitions to determine a closest point to a query line. Pattern Recognition Letters 24(12), 1915–1920 (2003)CrossRefGoogle Scholar
  19. 19.
    Schöngens, M., Hruz, T.: A Simple Framework for the Generalized Nearest Neighbor Problem. Technical Report 758, Theoretical Computer Science, ETH Zurich (2012)Google Scholar
  20. 20.
    Sharir, M., Shaul, H.: Ray Shooting Amid Balls, Farthest Point from a Line, and Range Emptiness Searching. In: SODA 2005: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 525–534 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomas Hruz
    • 1
  • Marcel Schöngens
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations